期刊文献+

基于压缩感知的道路交通参数修复方法研究 被引量:1

The Recovery Algorithm for Road Traffic Parameters Based on Compressive Sensing
下载PDF
导出
摘要 为了解决交通路网中的道路交通检测器大面积发生故障时道路交通参数数据的缺失或异常问题,本文提出了一种基于压缩感知的道路交通参数修复方法.首先对道路交通参数矩阵进行分解和逼近;然后在道路交通参数矩阵进行分解和逼近的基础上,利用压缩感知的理论及方法进行道路交通参数修复,并对基于压缩感知进行道路交通参数修复的过程中所涉及的主要参数进行分析和设定;最后依据实例对基于压缩感知的道路交通参数数据修复算法进行验证.选取北京市典型快速路对该算法进行验证,结果证明,基于压缩感知的道路交通参数数据的修复方法具有高精度,在实际应用中是可行的. To solve the road traffic parameters data problems (data invalid or data deletion) when a part of traffic states detectors in the road network break down, an algorithm based on compressive sensing is presented to repair traffic parameters of the road traffic network in this paper. Firstly, the road traffic parameters data are decomposed and approximated. Then the road traffic parameters recovery approach is presented based on compressive sensing, and the parameters setting referred in this road traffic parameters estimation approach based on compressive sensing is discussed. Finally, one typical road network in Beijing is adopted for the experiments analysis. The results show that this traffic states data recovery approach based on compressive sensing is feasible and can achieve a high accuracy.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2013年第6期67-72,共6页 Journal of Transportation Systems Engineering and Information Technology
基金 国家'八六三'项目(2012AA112401 2011AA110505) 国家自然科学基金(61104164) 轨道交通控制与安全国家重点实验室自主课题(RCS2010ZT004)
关键词 智能交通 交通参数修复 压缩感知 道路交通 数据修复 intelligent transportation traffic parameters recovery compressive sensing road traffic data recovery
  • 相关文献

参考文献2

二级参考文献9

  • 1WILLIAMS B M,DURVASULA P K,BROWN D E.Urban freeway traffic flow prediction:Application of seasonal autoregressive integrated moving average and exponential smoothing models[C]//Transportation Research Board 1644,Transportation Research Board.Washington,DC:TRB,1998:132-141.
  • 2RAMSEY B,HAYDEN G.AutoCounts:A way to analyse automatic traffic count data[J].Traffic Engineering and Control,1994,35(4):245-247.
  • 3LINT J W C,HOOGENDOORN S P,ZUYLEN H J.Accurate freeway travel time prediction with state-space neural networks under missing data[J].Transportation Research,2005,13(5/6):347-369.
  • 4HARTIKAINEN J,SASRKKAS.Optimal filtering with Kalman filters and smoothers-a Manual for Maltab toolbox EKF/UKF[EB/OL].[2009-07-01].http://www.cs.unc.edu/-welch/kalman.2007-08.
  • 5ZHONG M,LINGRAS P,SHARMA S.Estimation of missing traffic counts using factor,genetic,neural,and regression techniques[J].Transportation Research,2004,12(2):139-166.
  • 6STEPHANEDES Y J,MICHALOPOULOS P G,PLUM R A.Improved estimation of traffic flow for real-time control[C]//Transportation Research Record 795.Washington,DC:[s.n.],1981:28-39.
  • 7DAUBECHIES I.Ten lectures on wavelets[M].Philadelphia:Society for Industrial and Applied Mathematics,1992.
  • 8杨兆升,朱中.基于卡尔曼滤波理论的交通流量实时预测模型[J].中国公路学报,1999,12(3):63-67. 被引量:76
  • 9姜桂艳,冮龙晖,张晓东,王江锋.动态交通数据故障识别与修复方法[J].交通运输工程学报,2004,4(1):121-125. 被引量:48

共引文献8

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部