期刊文献+

胃癌经典分型在分子分型时代的临床诊断价值 被引量:6

Evaluation of traditional pathological classification at molecular classification era for gastric cancer
原文传递
导出
摘要 胃癌病理组织学分型在胃癌的基础研究与临床诊治中均占有举足轻重的地位。然而,胃癌在基础研究与临床实际应用上使用的分型体系存在不同,不同文献中采用的分型也不尽一致,时而用Lauren分型,时而用WHO分型.给胃癌研究带来一定的困惑。Lauren分型方案从提出至今历经半个世纪考验,仍然显示出其简便、易行且具有一定预后指导意义的优势;WHO分型方案优于Lauren分型方案之处是“与时俱进”,其根据胃癌研究进展而不断加以修订.始终是临床病理诊断中使用的常用方案。随着基因组学、转录组学、蛋白质组学和代谢组学等“组学”研究的开展,对海量研究数据的深入挖掘分析.胃癌的分子分型是当前研究热点。以往依据肿瘤表型特征决定治疗方案的做法极有可能被依据基因变异特征的模式所取代。针对同一种分子变异的基因靶向治疗要比针对同一种组织形态的化学治疗更趋合理。 Histopathological classification is in a pivotal position in both basic research and clinical diagnosis and treatment of gastric cancer. Currently, there are differentclassification systems in basic science and clinical application. In medical literatures, different classifications are used including Lauren and WHO systems, which have confused many researchers. Lauren classification has been proposed for half a century, but is still used worldwide. It shows many advantages of simple, easy handling with prognostic significance. The WHO classification scheme is better than Lauren classification in that it is continuously being revised according to the progress of gastric cancer, and is always used in the clinical and pathological diagnosis of common scenarios. Along with the progression of genomics, transcriptomics, proteomics, metabolomics researches, molecular classification of gastric cancer becomes the current hot topics. The traditional therapeutic approach based on phenotypic characteristics of gastric cancer will most likely be replaced with a gene variation mode. The gene-targeted therapy against the same molecular variation seems more reasonable than traditional chemical treatment based on the same morphological change.
作者 于颖彦
出处 《中华胃肠外科杂志》 CAS CSCD 2014年第1期18-20,共3页 Chinese Journal of Gastrointestinal Surgery
基金 基金项目:国家自然科学基金(81172329,81372644) 圉家科技部重大项目(2012AA02A504,2012AA02A203,2011ZX09307-001-05) 上海市科学技术委员会国际合作项目(12410706400) 上海市优秀学术带头人计划(11XD1403600)
关键词 胃肿瘤 组织分型 分子分型 靶向治疗 Stomach neoplasms Pathologicalclassification Molecular classification Targeted therapy
  • 相关文献

参考文献10

  • 1Lauren P. The two histological main types of gastric carcinoma:diffuse and so-called intestinal-type carcinoma,an attempt at a histo-clinical classification[J].Acta pathol Microbial Scand,1965.31-49.
  • 2Liu L,Wang Z,Ji J. A cohort study and meta-analysis between histopathological classification and prognosis of gastric carcinoma[J].Anticancer Agents Med Chem,2013.227-234.
  • 3于颖彦.胃癌的病理分型与预后[J].外科理论与实践,2011,16(3):240-243. 被引量:22
  • 4于颖彦,朱正纲.2010版WHO胃肿瘤临床病理学分类及分期解读[J].外科理论与实践,2011,16(5):508-512. 被引量:24
  • 5NIH. Director's challenge:toward a molecular classification of tumors[J/OL].http://grautsnihgov/grauts/guide/rfa-files/RFA-CA-98-027html,2013.
  • 6Sφrlie T,Perou CM,Tibshirani R. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J].{H}Proceedings of the National Academy of Sciences(USA),2001.10869-10874.
  • 7Golub TR,Slonim DK,Tamayo P. Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].{H}SCIENCE,1999.531-537.
  • 8Chen X,Leung SY,Yuen ST. Variation in gene expression patterns in human gastric cancers[J].{H}Molecular Biology of the Cell,2003.3208-3215.
  • 9郭磊,于颖彦,朱正纲.基因芯片数据挖掘与肿瘤分子分型研究[J].外科理论与实践,2010,15(1):83-86. 被引量:5
  • 10于颖彦;吕有勇.国家“863”重大项目“胃癌分子分型与个体化诊疗”课题组.胃癌病理分型和诊断标准的建议胃癌病理分型和诊断标准的建议[J].{H}中华病理学杂志,2010266-269.

二级参考文献51

  • 1李景武,梁寒,王晓娜.814例胃癌患者的预后因素分析[J].中国肿瘤临床,2006,33(7):399-402. 被引量:37
  • 2Ngan PS, Wong ML, Lam W, et al. Medical data mining using evolutionary computation[J]. Artif Intell Med,1999, 16(1):73-96.
  • 3Ye J, Li T, Xiong T, et al. Using uncorrelated discriminant analysis for tissue classification with gene expres sion data [J]. IEEE/ACM Trans Comput Biol Bioinform, 2004,1(4): 181-190.
  • 4Veenman C J, Reinders MJ. The nearest subclass classifier: a compromise between the nearest mean and nearest neighbor classifier[J]. IEEE Trans Pattern Anal Mach Intell,2005,27(9): 1417-1429.
  • 5Pontil M, Verri A. Properties of support vector machines [J]. Neural Comput,1998,10(4): 955-974.
  • 6Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box[J]. Cancer,2001,91 (8 Suppl): 1615- 1635.
  • 7Corpet F. Multiple sequence alignment with hierarchical clustering [J]. Nucleic Acids Res,1988,16 (22):10881- 10890.
  • 8Vesanto J, Alhoniemi E. Clustering of the self-organizing map[J]. IEEE Trans Neural Netw,2000,11(3):586-600.
  • 9Gasch AP, Eisen MB. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering[J]. Genome Biol,2002,3(11):RESEARCH0059.
  • 10Hyvarinen A, Oja E. Independent component analysis: algorithms and applications[J]. Neural Netw,2000,13(4- 5):411-430.

共引文献48

同被引文献26

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部