摘要
将粘弹性Maxwell流体本构方程和圆管层流运动基本方程相结合 ,利用数学解析方法研究了周期性压力梯度推动下脉动层流的流动规律 ,并得到粘弹性流体在圆管内周期性流动的速度表达式 ,按两种情形分析了粘弹性Maxwell流体脉动层流速度振幅分布状况。研究结果表明 ,Maxwell流体在 0~ 2π的周期内呈振荡流动。当ωt =0时 ,其速度振幅随频率和松弛时间的增大而减小。
The law of pulsating laminar flow under the pushing of periodic pressure gradient is obtained by the combination of Maxwell fluids'constitutive equation and momentum equation of laminar flowing in the round pipe. The law of velocity distribution under different frequency and relaxation time is presented. The Maxwell fluids flowing law in the period from 0 to 2π and the factors affecting the velocity distributions of Maxwell fluids, such as the relaxation time and frequency, are analyzed. The result of numerical computation shows that the velocity amplitude is reduced with the increases of the frequency and the relaxation time.
出处
《石油大学学报(自然科学版)》
CSCD
2000年第5期32-34,38,共4页
Journal of the University of Petroleum,China(Edition of Natural Science)
基金
山东省自然科学基金!资助项目 (Q96A0 61 1 1 )
关键词
粘弹性流体
周期流动
层流
速度分布
圆管层流
viscoelasticity fluid
periodic flow
laminar flow
velocity distribution