期刊文献+

简单记忆混沌系统的动力学分析与电路实现 被引量:3

Dynamical Analysis and Circuit Realization of Simple Memory Chaotic System
下载PDF
导出
摘要 为了研究记忆混沌系统的动力学特性,提出了一个含广义记忆元件的简单3维自治混沌系统。分析了混沌记忆系统的记忆效应和混沌特性,进行了电路设计和相应的实验验证;并在平衡点及稳定性分析的基础上,讨论了记忆混沌系统随参数变化的动力学行为。结果表明,与基于忆阻器的混沌电路不同,新提出的系统有一个确定的平衡点,其动力学行为仅依赖于系统控制参数,存在分岔、混沌和阵发混沌等复杂非线性现象。 To investigate the dynanrics of memory chaotic systems, a simple three-dimensional autonomous chaotic system containing a generalized memory element was proposed. The memory effects and chaotic characteristics of the memory chaotic system were analyzed, and circuit design and corresponding experimental verifications were performed. Based on the analysis of the equilibrium point and stabili- ty, the dynamical behaviors of the memory chaotic system with the variations of the parameter were discussed, The results indicated that, different from memristor based chaotic circuits, the new proposed system has unique equilibrium point, its dynamical behaviors only de- pend on the system control parameter and have complex nonlinear phenomena, such as bifurcation, chaos, and intermittencv chaos.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2014年第1期134-139,共6页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(51277017 61101193) 江苏省自然科学基金资助项目(BK2012583)
关键词 记忆元件 记忆混沌系统 动力学 电路实现 memory element memory chaotic system dynamics circuit realization
  • 相关文献

参考文献17

  • 1Chua L O. Memister-The missing circuit element[J].IEEE Transaction on Circuit Theory,1971,(05):507-519.
  • 2Chua L O,Kang S M. Memristive devices and systems[J].Proceedings of the IEEE,1976,(02):209-223.
  • 3Strukov D B,Snider G S,Stewart D R. The missing memristor found[J].Nature,2008.80-83.
  • 4Wang X B,Chen Y R,Xi H W. Spintronic memristor through spin torque induced magnetization motion[J].IEEE Electron Device Letters,2009,(03):294-297.
  • 5Martinelli G. Circuit modeling of nano-devices[J].Electronics Letters,2008,(22):1294-1295.
  • 6Riaza R. Nondegeneracy conditions for active memristive circuits[J].IEEE Transaction on Circuits and Systems—Ⅱ:Express Briefs,2010,(03):223-227.
  • 7Muthuswamy B,Chua L O. Simplest chaotic circuit[J].International Journal of Bifurcation and Chaos,2010,(05):1567-1580.
  • 8Muthuswamy B. Implementing memristor based chaotic circuits[J].International Journal of Bifurcation and Chaos,2010,(05):1335-1350.
  • 9Williams R. How we found the missing memristor[J].IEEE Spectrum,2008,(12):28-35.
  • 10Di Ventra M,Pershin Y V,Chua L O. Circuit dements with memory:Memristors,memcapacitors,and meminductors[J].Proceedings of the IEEE,2009,(10):1717-1724.

二级参考文献17

  • 1Liu Z, Zhu X H, Hu W, et al. Principles of chaotic signal radar[J]. Int J Bifur Chaos,2007,17(5) :1735 -1739.
  • 2Abel A, Schwarz W. Chaos communications--Principles, schemes, and system analysis [ J ]. Proc IEEE, 2002, 90 (5) : 691 -710.
  • 3Maggio G M, Feo O D, Kennedy M P. Nonlinear analysis of the Colpitts oscillator and applications to design [ J ]. IEEE Trans Circuits and Syst-I, 1999,46 (9) : 1118 - 1130.
  • 4Mykolaitis G, Tamasevicius A, Bumeliene S. Experimental demonstration of chaos from the Colpitts oscillator in the VHF and the UHF ranges[J]. Electron Lett,2004, 40(2) : 91 -92.
  • 5Yalcin M E. Increasing the entropy of a random generator using n-scroll chaotic attractors [ J ]. Int J Bifur Chaos,2007,17(12) : 4471 -4479.
  • 6Lu J H, Chen G R. Generating muhiscroll chaotic attractors: theories, methods and applications [ J ]. Int J Bifur Chaos,2006,16 (4) : 775 - 858.
  • 7Lu J H, Yu S M, Leung H, et al. Experimental verification of multidirectional multi-scroll chaotic attractors [ J ]. IEEE Trans Circuits and Syst-I,2006,53 ( 1 ) : 149 - 165.
  • 8Yu S M, Lu J H, Leung H,et al. Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [ J ]. IEEE Trans Circuits and Syst-I, 2005,52 (7) : 1459 - 1476.
  • 9Yu S M, Lu J H, Chen G R. Theoretical design and circuit implementation of multi-directional multi-torus chaotic attractors [ J ]. IEEE Trans Circuits and Syst-I, 2007,54 (9) : 2087 - 2098.
  • 10Yu S M, Tang W K S, Lu J H,et al. Generation of n x mwing Lorenz-like attractors from a modified Shimizu-Morioka model [ J ]. IEEE Trans Circuits and Syst-II, 2008, 55 (11) :1168 - 1172.

共引文献5

同被引文献36

  • 1彭飞,丘水生,龙敏.基于二维超混沌映射的单向Hash函数构造[J].物理学报,2005,54(10):4562-4568. 被引量:26
  • 2周昆.一种基于 Honeyd 的过程控制蜜罐系统的平台搭建研究[D].上海=华东理工大学,2014.
  • 3Gheng L,Hongqi Z.Real-time stepping stone detection based on RTT[C]//Proceedings of 2013 Third Interna- tional Conference on Instrumentation,Measurement,Com- puter,Communication and Control(IMCCC).New York:IEEE,2013:85-89.
  • 4Singh H,Kaur L,Singh K.Fractional M-band dual tree complex wavelet transform for digital watermarking[J].Sadhana,2014,39(2):345-361.
  • 5GhoshP,Ghosh R,Sinha S,et al.A novel digital water- marking technique for video copyright protection[J].Computer Science and Information Technology,2012:601-609.
  • 6WuK,Yan W,Du J.A robust dual digitai-image water- marking technique[C]//Proceedings of International Con- ference on Computational Intelligence and Security Work- shops.New York:IEEE,2007:668-671.
  • 7Kabi K K,Saha B J,Pradhan C.Enhanced digital water- marking scheme using fractal images in wavelets[C]// Proceedings of 2014 International Conference on Compu- ting,Communication and Networking Technologies(IC- CCNT).New York:IEEE,2014:1-6.
  • 8Sachnev V,Kim H J,Nam J,et al.Reversible watermark- ing algorithm using sorting and prediction[J].IEEE Transactions on Circuits and Systems for Video Technolo- gy,2009,19(7):989-999.
  • 9Qu Z,Jin C.Self-restoring dual watermarking technology [C]//Proceedings of IEEE International Conference on System of Systems Engineering.New York:IEEE,2007:1-5.
  • 10Frattolillo F.Web-oriented nonblind image watermarking procedure[J].Journal of Electronic Imaging,2006,15(3):033011-033011-14.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部