期刊文献+

基于视觉注意机制的复杂背景下红外小目标检测 被引量:2

Infrared Small Target Detection Under Complex Background Based on Visual Attention
下载PDF
导出
摘要 针对视觉注意机制Itti模型对复杂背景下红外小目标检测易受到图像背景杂波影响,检测结果不理想的情况,对传统算法加以改进,在Itti模型中引入背景预测算子。对图像背景进行预测,与原图像进行差减,以达到突出目标区域的目的,消除背景区域对目标显著性的影响。再提取滤除背景后的图像视觉差异,找出图像的显著性区域,实现对红外小目标的检测。将改进后的模型应用于复杂背景下红外小目标检测中,实验结果表明,相对于传统的Itti模型的检测算法,新提出的算法具有更高的检测率。 For the condition of infrared small target detection is vulnerable to background clutter and the results are undesirable by visual attention Itti model, the traditional Itti model is improved and background prediction is introduced. Firstly, image background is predicted and then subtracted from the original image to highlight the target area and eliminate back- ground effects on target region. Secondly, the visual difference of filtered background is ex- tracted to find out the significant target area and achieve the infrared small target detection. The improved model is applied to complex background infrared small target detection, the experimental results show that compared with traditional Itti model detection algorithm, the new proposed algorithm has a higher detection rate.
作者 马岩 李环
出处 《沈阳理工大学学报》 CAS 2014年第1期18-23,共6页 Journal of Shenyang Ligong University
关键词 视觉注意 背景预测 红外图像 小目标检测 visual attention background prediction infrared image small target detection
  • 相关文献

参考文献11

二级参考文献44

  • 1叶聪颖,李翠华.基于HSI的视觉注意力模型及其在船只检测中的应用[J].厦门大学学报(自然科学版),2005,44(4):484-488. 被引量:24
  • 2彭嘉雄,彭铁.弱目标检测的图像流法[J].红外与激光工程,1996,25(4):34-40. 被引量:28
  • 3吕雁,史林,苏新主.基于小波和高阶累积量的红外弱小目标检测[J].红外技术,2006,28(12):713-716. 被引量:12
  • 4Jackway P T. Improved morphological Top-hat [J]. Electronics Letters, 2000, 36(14) : 1194-1195.
  • 5Soni T, Zeidler J R, Ku W H. Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data [J]. IEEE Transaction on Image Processing, 1993, 2 (3): 327-340.
  • 6Deshpande S D, Er M H, Ronda V, et al. Maxmean and max-median filters for detection of smalltargets[C]//Proceedings of SPIE. Bellingham,WA, USA:SPIE, 1999, 3809: 74-83.
  • 7Serra J. Image analysis and mathematical morphology [M]. New York: Academic Press, 1982.
  • 8Andrei C J, Michael W, Jos R. Morphological hattransformation scale spaces and their use in pattern classification [J]. Pattern Recognition, 2004, 37: 901-915.
  • 9De I, Chanda B, Chattopadhyay B. Enhancing effective depth-of-field by image fusion using mathematical morphology [J]. Image and Vision Computing, 2006, 24: 1278-1287.
  • 10Burgeth B, Bruhn A, Papenberg N, et al, Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions [J]. Signal Processing, 2007, 87: 277-290.

共引文献151

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部