期刊文献+

羰基多晶铁纤维合成CoZn-W铁氧体研究 被引量:1

Synthesis of CoZn-W-type Hexagonal Ferrite with Carbonyl Iron Fiber
下载PDF
导出
摘要 以羰基多晶铁纤维作为铁源取代传统的FeOOH原料,用化学沉淀一局部规整法制备了CoZn—W铁氧体。XRD、VSM和SEM分析结果表明,CoZn—W中无杂相出现其颗粒呈块状或长块状,颗粒尺寸约2~12μm。其饱和磁化强度胁为70.90emu·g^-1,矫顽力强度胁为108.620e。 Using carbonyl iron fiber as raw materials to replace the traditional FeOOH, CoZn-W type ferrite precursor was prepared by precipitation-toptactic reaction method. The synthesized CoZn-Wwas pure phase without impurity, appeared block or long block mor- phology with particle size of 2 - 12μm, and thus presented the saturation magnetization (Ms) ofT0.90 emu.g-1 ,and coercive force (Hc) of 108.62 Oe.
出处 《沈阳理工大学学报》 CAS 2014年第1期24-27,共4页 Journal of Shenyang Ligong University
基金 国家自然科学基金项目(51172148)
关键词 化学沉淀一局部规整法 W型铁氧体 羰基多晶铁纤维 precipitation-toptactic reaction method W type ferrite carbonyl iron fiber
  • 相关文献

参考文献11

  • 1徐洋洋.一维磁铅石型铁氧体的制备、形成历程及性能研究[D]沈阳:沈阳理工大学,2012.
  • 2叶云,杨辉,李保东,李巧玲,王晶禹.纳米掺杂W型钡铁氧体的制备与性能研究[J].分析测试技术与仪器,2009,15(2):89-94. 被引量:2
  • 3李茹民,刘致阳,徐春旭,张密林.铁氧体SrNi_2Fe_(16)O_(27)超微粉的制备与磁性能研究[J].功能材料,2007,38(7):1082-1084. 被引量:2
  • 4王琦洁,黄英,熊佳.纳米钡铁氧体制备技术的研究进展[J].硅酸盐通报,2005,24(3):49-53. 被引量:20
  • 5葛如振.W型钡铁氧体的制备与性能研究[D]沈阳:沈阳理工大学,2011.
  • 6Muhammad J I,Rafaqat A K,Shigemi M. Tailoring of structural,electrical and magnetic properties of BaCo2W-type hexaferrites by doping with Zr-Mn binary mixtures for useful applications[J].Journal of Magnetism and Magnetic Materials,2011,(16):2137-2144.
  • 7谭玉琢,孟锦宏,孙杰,曹晓晖.化学沉淀-局部规整法制备棒状M型钡铁氧体的形成历程[J].无机化学学报,2008,24(12):1989-1993. 被引量:10
  • 8董鸿飞.化学沉淀-局部规整法制备棒状铁氧体及其性能研究[D]沈阳:沈阳理工大学,2010.
  • 9关山月.二维M型钡铁氧体的制备、形成历程及性能研究[D]沈阳:沈阳理工大学,2012.
  • 10Muhammad J.I,Rafaqat A.K,Shigeru T. W-type hexaferrite nanoparticles:A consideration for microwave attenuation at wide frequency band of 0.5-10 GHz[J].Journal of Alloys and Compounds,2011,(28):7618-7624.

二级参考文献51

共引文献30

同被引文献43

  • 1陈晓东,王桂芹,段玉平,李伟平,刘顺华.炭黑/钛酸钡复合颗粒的结构及吸波性能[J].硅酸盐学报,2006,34(12):1446-1451. 被引量:11
  • 2史旭明,张军,许仲梓.隐身材料的研究进展[J].材料导报,2007,21(F05):310-315. 被引量:21
  • 3Petrov V M, Gagulin V V. Microwave absorbing materials [J]. Inorg Mater, 2001,37(2) :93.
  • 4Chung D. Electromagnetic interference shielding effective- ness of carbon materials [J]. Carbon,2001,39(2) : 279.
  • 5Saib A, Bednarz L, Daussin R, et al. Carbon nanotube composites for broadband microwave absorbing materials [J]. IEEE Trans Microwave Theory Techniques, 2006,54 (6) : 2745.
  • 6Rosa I M D, Dinescu A, Sarasini F, et al. Effect of short carbon fibers and MWCNTs on microwave absorbing pro- perties of polyester composites containing nickel-coated car- bon fibers [J]. Compos Sci Technol,2010,70(1): 102.
  • 7Ahn C H. Microwave metamaterial applications using com- plementary split ring resonators and high cain rectifying re- flectarray for wireless power transmission [D]. Texas: Te- xas A&M University, 2010.
  • 8Peng C H, Hwang C C, Wan J, et al. Microwave-absorbing characteristics for the composites of thermal-plastic polyure- thane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method [J]. Mater Sci Eng B, 2005,117 (1) : 27.
  • 9Akangah P, Lingaiah S, Shivakumar K. Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epox- y/carbon fiber composite laminates [J]. Compos Struct, 2010,92 (6) : 1432.
  • 10Rosa I M D, Sarasini F, Sarto M S, et al. EMC impact of advanced carbon fiber/carbon nanotube reinforced compo- sites for next-generation aerospace applications [J]. IEEE Trans Electromagn Compatibility, 2008,50(3) : 556.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部