期刊文献+

使破轮图构形成为二次构形之边序的构造与生成

The structure and generation of the orders of edges making the graphic arrangements determined by broken-wheel graphs quadratic
下载PDF
导出
摘要 研究了使破轮图决定的构形成为二次构形的边序,证明了边序使破轮图构形成为二次构形的一个充要条件,找出了生成所有这种边序的递推算法。 The orders of edges which make the graphic arrangements determined by broken-wheel graphs quadratic were analyzed in this paper.A necessary and sufficient condition for making the broken-wheel graphic arrangements quadratic was proved.The structure and generation of the orders of the edges were given,and a recursive algorithm was also obtained.
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第B12期112-116,共5页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(11071010)
关键词 破轮图 图构形 二次构形 边序 递推算法 broken-wheel graph graphic arrangement quadratic arrangement orders of edges recursive algorithm
  • 相关文献

参考文献2

二级参考文献11

  • 1章江华,姜广峰.OrlikSolomon代数的NBC基的一个算法[J].北京化工大学学报(自然科学版),2005,32(1):85-89. 被引量:4
  • 2Orlik P,Terao H.Arrangements of hyperplanes[M].Berlin:Springer-Verlag,1992.
  • 3Stanley R P.An introduction to hyperplane arrangements[M].Washington:IAS/Park City Mathematics Series,2004.
  • 4Yuzvinsky S.Orlik-solomon algebras in algebra and topology[J].Russian MathSurveys,2001,56(2):293-364.
  • 5Pearson K J.Cohomology of the orlik-solomon algebras[D].Oregon:the University of Oregon,2000.
  • 6Orlik P, Terao H. Arrangements of Hyperplanes [ M].Berlin. Springer-Verlag, 1992, 67- 69.
  • 7Yuzvinsky S. Orlik-Solomon algebras in algebra and topology[J]. Russian Math Surveys, 2001,56(2) :293 -364.
  • 8Pearson K J. Cohomology of the Orlik-Solomon algebras[D]. Oregon: the University of Oregon, 2000.
  • 9Libgober A, Yuzvinsky S. Cohomology of the Orlik-Solomon algrbras and local systems [J ]. Compositio Math, 2000, 12( 1 ) : 337 - 361.
  • 10RichabdJ.离散数学(第五版)[M].北京:人民邮电出版社,2003.179-181.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部