期刊文献+

运用Matlab基于LSM方法对美式期权定价的新探究

New Explorations about American Option Pricing by Applying Matlab Based on LSM
下载PDF
导出
摘要 传统期权定价方法是通过主观假定初始价格、执行价格、期限、波动率、无风险利率等条件来对期权进行定价,很少联系实际的期权市场报价对期权进行定价。本文根据股票期权市场报价,通过Matlab快速方便地求解出隐含的波动率和无风险利率,并在此基础上运用Matlab基于最小二乘蒙特卡洛模拟(LSM)方法对该股票的美式期权进行定价。本文揭示了如何根据期权市场报价实现隐含波动率和无风险利率的求解,进而结合LSM方法对美式期权进行定价的一种新方法。此外,本文对LSM方法的改进技术也进行了探讨。 The traditional option pricing method usually prices the option through conditions such as the initial price, executive price, term, volatility ratio and risk-free interest rate, which seldom prices the option by connecting with the quoted option market price. Based on the quoted option market price, this paper calculates the implied volatili- ty and risk-free interest rate fast and conveniently through Matlab. And by applying Matlab based on LSM, we can price American option. This article shows how to calculate the implied volatility and risk-free interest rate according to the quoted option market price, and the method to price American option which combines LSM. In addition, this pa- per also probes into the improved technology of LSM.
作者 刘海永 严红
出处 《金融发展研究》 2013年第12期20-24,共5页 Journal Of Financial Development Research
基金 国家社科基金项目<培育西部民族地区内生增长能力的制度安排与路径选择>(批准文号:11xmz059)的阶段性成果
关键词 LSM方法 美式期权定价 隐含波动率 无风险利率 LSM, American option pricing, implied volatility, risk-free interest rate
  • 相关文献

参考文献7

二级参考文献41

  • 1李存行.认股权证的定价研究[J].统计与决策,2006,22(2):22-24. 被引量:21
  • 2Black F, Scholes M S. The pricing of options and corporate liabilities[ J]. Journal of Political Economy, 1973, 81 : 637-654.
  • 3Johnson H. Options on the maximum or the minimum of several assets[ J]. Journal of Financial and Quantitative Analysis, 1987, 22: 277-283.
  • 4Stulz R M. Options on the minimum or the maximum of two risky assets: analysis and applications[ J]. Journal of Financial Economics, 1982, 10: 161-185.
  • 5Embrechts P, McNeil A J, Straumann D. Correlation and dependence in risk management: properties and pitfalls. In Dempster M A H, ed. Risk Management: Value at Risk and Beyond [ M ]. Cambridge University Press, 2002. 176-223.
  • 6Rosenberg J V. Semiparametric pricing of multivariate contingent claims[ M]. Working Paper S-99-35, Stern School of Business, New York University, New York, 1999.
  • 7Cherubini U, Luciano E. Bivariate option pricing with copulas [J]. Applied Mathematical Finance, 2002, 9 : 69-86.
  • 8Rosenberg J V. Nonparametric pricing of multivariate contingent claims [ J ]. Journal of Derivatives, 2003, 10 : 9-26.
  • 9Cherubini U, Luciano E, Vecchiato W. Copula method in finance[ MI, John Wiley & Sons Ltd., 2004. 231-280.
  • 10Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31 : 307 -327.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部