期刊文献+

基于多传感器信息融合的SVM结构损伤诊断方法 被引量:1

A structure damage diagnosis method based on multi-sensor information fusion and support vector machine
下载PDF
导出
摘要 为了能准确地诊断复杂结构损伤的发生、位置和程度,提出了一种聚类经验模式分解(EEMD)、小波包分解(WPT)、多传感器信息融合和SVM模式分类相结合的结构损伤诊断方法.首先对多个传感器采集的加速度振动信号进行EEMD分解,选择包含结构损伤信息丰富的固有模态函数(IMF);其次对其进行正交小波包分解,并计算小波包相对能量分布;最后把这些传感器信号的小波包相对能量融合,构成SVM分类器的输入特征向量,从而实现损伤的诊断和评价.研究结果表明:该方法在学习样本数较少的情况下仍然具有较好的适应性和分类能力;多传感器信息融合技术减小了损伤检测信息的不确定性,提高了损伤诊断准确率. In order to make a diagnosis of damage occurrence, position and degree of the complex structures accurately, a structural damage diagnosis method was presented by means of ensemble empirical mode decomposition (EEMD), wavelet packet decomposition, and multi-sensor feature fusion theory and support vector machine (SVM) pattern classification. Firstly, the response signals of the ASCE benchmark structure are processed by using EEMD, and the intrinsic mode function (IMF) which contains structural damage information are selected. Secondly, the selected IMF is decomposed by ortbogonal WPT, and also wavelet package energy (WPE) on decomposition frequency bands are calculated. Thirdly, the input feature vectors of SVM classifier were built by fusing wavelet packet relative energy distribution of these sensors. Finally, with the trained classifier, damage diagnosis and assessment was realized. The result indicated that it still has good adaptability and classification capability in the case of small samples and the fused feature can reduce the uncertainty of damage detection information, with the diagnosis accuracy improved.
出处 《西安建筑科技大学学报(自然科学版)》 CSCD 北大核心 2013年第6期803-807,共5页 Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基金 中国博士后基金资助项目(20110491637) 国家青年自然科学基金资助项目(61201407 61203374) 中央高校基本科研业务费的资助项目(2013G1321044)
关键词 聚类经验模式分解 小波包频带能量 支持向量机 信息融合 损伤诊断 ensemble empirical mode decomposition (EEMD) wavelet packet frequency band energy support vectormachine ( SVM) information fusion damage diagnosis
  • 相关文献

参考文献12

  • 1GAETAN K,KEITH W,ALEXANDER F V. Past,present and future of nonlinear system identification in structural dynamics[J].{H}Mechanical Systems and Signal Processing,2006,(20):505-592.
  • 2LEI Ya-guo,HE Zheng-jia,ZI Yan-yang. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J].{H}Mechanical Systems and Signal Processing,2009,(04):1327-1338.
  • 3边肇祺;张学工.模式识别[M]北京:清华大学出版社,2000.
  • 4PARK Seunghee,INMAN Daniel J,LEE Jong-Jae. Piezoelectric Sensor-Based Health Monitoring of Railroad Tracks Using a Two-Step Support Vector Machine Classifier[J].Journal of Infrastructure Systems,2008,(01):80-88.doi:10.1061/(ASCE)1076-0342(2008)14:1(80).
  • 5XIE Jian-hong. Structural damage detection based on fuzzy LS-SVM integrated quantum genetic algorithm[J].Information Technology for Manufacturing Systems,2010,(20/23):1365-1371.
  • 6刘春城,刘佼.基于支持向量机的大跨度拱桥损伤识别方法研究[J].振动与冲击,2010,29(7):174-178. 被引量:14
  • 7LIU Yi-Yan,JU Yong-Feng,DUAN Chen-Dong. Structure Damage Diagnosis Using Neural Network and Feature Fusion[J].Engineering Applications and Artificial Intelligence,2011,(01):87-92.
  • 8WU Z H,HUANG N E. Ensemble Empirical Mode Decomposition:A Noise Assisted Data Analysis Method[J].Advances in Adaptive Data Analysis,2009,(01):1-41.
  • 9刘义艳,贺拴海,巨永锋,段晨东.采用EEMD和WPT的结构损伤特征提取方法[J].振动.测试与诊断,2012,32(2):256-260. 被引量:5
  • 10ZUBAIDAH Ismail,ZHI Chao-ong. Honeycomb damage detection in a reinforced concrete beam using frequency mode shape regression[J].{H}MEASUREMENT,2012,(04):950-959.

二级参考文献15

  • 1刘龙,孟光.基于曲率模态和支持向量机的结构损伤位置两步识别方法[J].工程力学,2006,23(A01):35-39. 被引量:12
  • 2金伟良,袁雪霞.基于LS-SVM的结构可靠度响应面分析方法[J].浙江大学学报(工学版),2007,41(1):44-47. 被引量:18
  • 3Nello Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods[M].2000,6.
  • 4Fletcher R.Practical Method of Optimization,John Wiley and Sons:Chichester and New York,1987.
  • 5李忠献,齐怀展,朱劲松.基于模态曲率法的大跨度斜拉桥损伤识别[J].地震工程与工程振动,2007,27(4):122-126. 被引量:22
  • 6Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1 : 1- 41.
  • 7Huang N E, Shen Zheng, Long S R, et al. The em- pirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society of London Series A, 1998,454 (1971) : 903-995.
  • 8Johnson E A, Lam H F, Katafygiotis L S, et al. Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data[J]. Journal of Engineering Mechanics-ASCE, 2004, 130 (1) : 3- 15.
  • 9Wu Jiurong, Li Qiusheng. Structural parameter iden- tification and damage detection for a steel structure using a two-stage finite element model updating method [J]. Journal of Constructional Steel Re- search, 2006,62 (3) : 231-239.
  • 10VAPNIKV 张学工 译.统计学习理论的本质[M].北京:清华大学出版社,2004.122-135.

共引文献17

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部