摘要
设X1,X2,…,X n是同分布的两两NQD样本,具有相同的密度函数f(x),利用两两NQD序列的Bernstein型不等式,将负相关(NA)样本的最近邻密度估计的一致强相合速度推广到两两NQD样本,在更弱的条件下,获得了与NA样本情形下相同的结论。
It is supposed that X1, X2,…, Xn are independent and identically distributed pariwise NQD samples, with a common density functionf(x). By using the Bernstein type inequality for pariwise NQD sequences, the rate of uniform strong con- sistency of nearest neighbor estimator of density function for negatively associated (NA) samples is extended to parlwise NQD sam- ples. Under much weaker conditions, the results are as good as the corresponding ones for NA samples.
出处
《阜阳师范学院学报(自然科学版)》
2013年第4期5-8,共4页
Journal of Fuyang Normal University(Natural Science)
基金
国家自然科学基金数学天元基金项目(11226200)
安徽省自然科学研究项目(KJ2013Z265)资助
关键词
两两NQD样本
最近邻密度估计
一致强相合速度
pariwise NQD samples
nearest neighbor estimator of density function
rate of uniform strong consistency