期刊文献+

混合幂平均不等式的连续类似(英文)

CONTINUOUS ANALOGUE OF MIXED POWER MEAN INEQUALITIES
下载PDF
导出
摘要 Holland提出的关于混合算术几何平均的猜想,最先被Kedlaya于1994年解决,后被Moud和Pecari推广到混合幂平均.在本文中,我们给出了这个混合幂平均不等式的积分形式. In 1994, Kedlaya proved a mixed A-G mean inequality conjectured by Holland, then Moud and Pecaric generalized the Kedlaya's result to mixed power mean. In this paper, we present the continuous analogue of Moud-Pecarid's inequality.
作者 冷拓 秦小林
出处 《南京大学学报(数学半年刊)》 CAS 2013年第2期197-204,共8页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by NBRP of China(2011CB302402) NNSF of China(91118001)
关键词 混合幂平均不等式 连续类似 哈代不等式 mixed power mean inequalities, continuous analogue
  • 相关文献

参考文献10

  • 1Hardy G,Littlewood J E,Polya G. Inequalities,second edition[M].{H}Cambridge:Cambridge University Press,1951.
  • 2Holland F. On a Mixed Arithmectic-mean,Geometric-mean Inequality[J].Math Competitions,1992.60-64.
  • 3Kedlaya K. Proof of a Mixed Arithmetic-mean Inequality[J].Amer Math Monthly,1994.355-357.
  • 4Kedlaya K. A Weighted Mixed-mean Inequality[J].Amer Math Monthly,1999.355-358.
  • 5Matsuda T. An Indutctive Proof of a Mixed Arithmetic-geometric Mean Inequality[J].Amer Math Monthly,1995.634-637.
  • 6Moud B,Pe(c)ari(c) J E. A Mixed Means Inequality[J].Proc Austral Math Soc Gaz,1996.67-70.
  • 7Mond B,Pe(c)ari(c) J E. A Mixed Arithmetic-mean-harmonic-mean Matrix Inequality[J].{H}Linear Algebra and its Applications,1996.449-454.
  • 8Nanjundiah T S. Sharpening of some Classical Inequalities[J].Math Student,1952.24-25.
  • 9Peri(c) I. Overview of Mixed Means,Operator Norms of Averaging Operators and Mixmal Functions and some new Results[J].Math Ineq Appl,2009.905-915.
  • 10Tarnavas C D,Tarnavas D D. An Inequality for Mixed Power Means[J].Math Ineq Appl,1999.175-181.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部