期刊文献+

解奇异非线性方程组的修正张量法 被引量:1

A MODIFIED TENSOR METHOD FOR SINGULAR NONLINEAR EQUATIONS
下载PDF
导出
摘要 本文提出解奇异非线性方程组(解点的雅可比矩阵奇异)的修正张量法.修正张量法的主要思想是利用雅可比矩阵的差来构造低秩张量模型,并近似成线性模型来求解.这个修正张量法保持了解奇异问题的超线性收敛性,其计算效果也被部分数值试验结果所证实. In this paper, we propose a modified tensor method for singular nonlinear equations(the Jacobian matrix at the root is singular). In the modified tensor method, the difference of the Jacobian matrix is used to construct low-rank tensor model, and the approximated linear model is solved. The modified tensor method is superlinearly convergent for solving the singular problems, and its efficiency is showed by some numerical tests.
作者 邱明敏 倪勤
出处 《南京大学学报(数学半年刊)》 CAS 2013年第2期253-260,共8页 Journal of Nanjing University(Mathematical Biquarterly)
基金 国家自然科学基金项目(11071117 11001128)
关键词 非线性方程组 修正张量方法 奇异问题 nonlinear equations, modified tensor method, singular problem
  • 相关文献

参考文献9

  • 1Bouaricha A,Schnabel R B. Tensor Methods for Large Sparse Systems of Nonlinear Equations[J].{H}Mathematical Programming,1998.377-400.
  • 2Bouaricha A,Schnabel R B. Tensor Methods for Large Sparse Systems of Nonlinear Least Squares Problems[J].{H}SIAM Journal ON SCIENTIFIC COMPUTING,1999.1199-1221.
  • 3Buhmiler S,Kreji(c) N,Lu(z)nin Z. Practical Quasi-Newton Algorithms for Singular Nonlinear Systems[J].Numer Algor,2010.481-502.
  • 4Dan F,Frank P D,Schnabel R B. Local Convergence Analysis of Tensor Methods for Nonlinear Equations[J].{H}Mathematical Programming,1993.427-459.
  • 5Dennis J E,Schnabel R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations[M].SIAM,1996.86-107.
  • 6倪勤.最优化方法与程序设计[M]{H}北京:科学出版社,200945-47.
  • 7Moré J J,Garbow B S,Hillstrom K E. Testing Unconstrained Optimization Software[J].{H}ACM Transactions on Mathematical Software,1981.17-41.
  • 8Schnabel R B,Frank P D. Tensor Methods for Nonlinear Equations[J].{H}SIAM Journal of Numerical Analysis,1984.815-843.
  • 9袁亚湘;孙文瑜.最优化理论与方法[M]{H}北京:科学出版社,1997.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部