摘要
针对重载电力机车的黏着控制,提出了一种基于粒子群算法优化最小二乘支持向量机的控制仿真模型。经过对国内外重载机车的黏着控制方法对比分析,提出基于最小二乘支持向量机的黏着控制算法,运用粒子群优化算法对LSSVM的结构参数进行优化,以达到更好的黏着控制效果。仿真结果表明,该模型具有较好的鲁棒性和较高的控制精度。
Based on least squares support vector machine (LSSVM),adhesion controlsimulation model of heavy haul electric locomotive optimized bypartiele swarm optimization (PSO)is put forward. Firstly, several common adhesion control methods are describedin detail, and then adhesion control algorithm based on LSSVM is proposed. In order to achieve better effect of adhesion control, the structure parameters of LSSVM are optimized byPSO algorithm. Simulation results show that the model has better robustness and high control accuracy.
出处
《铁道机车车辆》
2013年第A02期49-51,91,共4页
Railway Locomotive & Car
基金
中央高校科研基本业务费专项资金资助项目(E11JB00310,E12JB00140)