期刊文献+

Cochrane和的一些加权均值

Some weighted mean values of Cochrane sum
下载PDF
导出
摘要 利用解析方法以及Dirichle L函数与特征和的性质,研究Cochrane和的一些加权均值及Cochrane和的一些渐近性质。得到了Cochrane和的如下形式的混合均值:q∑a=1q∑a=1ambnC(ab,q),∑a<q/2∑a<q/2abC(ab,q)。 Using analytic method and the important properties of Dirichlet L-function and character sums, to study some weighted mean value, distribution properties of Coehrane sum, and its asymptotic feature. The following formsof hybrid mean formulas are obtained:q/∑a=1 q/∑a=1 ambnC(ab,q),∑a〈q/2a〈q/2∑ abC(ab.,q).
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期861-863,共3页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071194) 陕西省教育厅科学研究计划基金资助项目(2013JK0561)
关键词 Cochrane和 特征和 L-函数 加权均值 渐近公式 Cochrane sum character sum L-function weighted mean value asymptotic formula
  • 相关文献

参考文献5

  • 1ZHANG Wen-peng. On a sum analogous to Dedekindsum and its mean square value formula[ J]. International Jour- nalof Mathematics and Mathematical Sciences, 2002,32 : 47-55.
  • 2徐哲峰,张文鹏,Dirichlet特征及其应用[M].北京:科学出版社,2008.
  • 3Zhe Feng XU.A Mean Value of Cochrane Sum[J].Acta Mathematica Sinica,English Series,2009,25(2):223-234. 被引量:4
  • 4XU Zhe-feng. A note on the $ 2k $ - th power mean of character sums over the quarter interval [ J ]. Proceedings of American Mathematical Society,2008,136 ( 12 ) : 4175- 4184.
  • 5TOYOIZUMI M. On certain character sums [ J ]. Acta Ar- ithmetica, 1990,55 : 229-232.

二级参考文献11

  • 1Carlitz, L.: The reciprocity theorem of Dedekind sums. Pacific J. Math., 3, 513-522 (1953)
  • 2Rademacher, H.: On the transformation oflog η(T). J. Indian. Math. Soc., 19, 25-30(1955)
  • 3Conrey, J. B., Fransen, E., Klein, R., Scott, C.: Mean values of Dedekind sums. J. Number Theory, 41, 27-31 (1982)
  • 4Zhang, W. P.: A note on the mean square valueof the Dedekind sums. Acta Math. Hungar., 86, 275-289 (2000)
  • 5Zhang, W. P.: On a sum analogous to Dedekind sum and its mean square value formula. International J. of Math. and Math. Sci., 32, 47-55 (2002)
  • 6Zhang, W. P.: On a Cochrane sum and its hybrid mean value formula. J. Math. Anal. Appl., 267, 89-96 (2002)
  • 7Zhang, W. P., Liu, H. N.: A note on the Cochrane sum and its hybrid mean value formula. J. Math. Anal. Appl., 288, 646-659 (2003)
  • 8Xu, Z. F., Zhang, W. P.: On the order of the high-dimensional Cochrane sum and its mean value. J. Number Theory, 117, 131-145 (2006)
  • 9Takeo, F.: On Kronecker's limit formula for Dirichlet series with periodic coefficients. Acta Arith., 55, 59-73 (1990)
  • 10Zhang,W. P.: On the mean values of Dedekind Sums. Journal de Theorie des Nombres, 8, 429-442 (1996)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部