期刊文献+

一种基于稀疏表示的手势识别算法 被引量:3

A gesture recognition algorithm based on sparse representation
下载PDF
导出
摘要 针对经典手势识别方法中在旋转变化与偏移情况下识别率不高的问题,提出一种基于稀疏表示的手势识别算法。通过最小二乘法求解手势特征的稀疏表示,利用Sebastien手势库训练构建出稀疏表示手势冗余字典,最后根据残差最小值实现手势识别。实验结果表明:在手势发生旋转变化和偏移的情况下,所提出的基于稀疏表示的手势识别算法识别率高于经典的最近邻分类手势识别算法。 Sparse representation is proposed for the classic gesture recognition method under an angle rotation and offset variation, in which the recognition rate is not high. Sparse representation is solved by the least square meth- od, then the redundant dictionary is gained from the Sebastien training samples, and will be used to sparsely repre- sent the test gestures to classify the gesture images by the residual error minimum classification. The experimental results show that the test signal samples which were classified by sparse representation could be identified with a higher rate than the classic neighbor nearest classification tion of the gesture. , even if there is a certain angle rotation and offset varia-tion of the gesture.
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第6期881-884,共4页 Journal of Northwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(61379010) 陕西省自然科学基础研究计划基金资助项目(2012JQ1012)
关键词 稀疏表示 手势识别 特征提取 最小二乘法 sparse representation gesture recognition feature extraction least square algorithm
  • 相关文献

参考文献10

  • 1任海兵,祝远新,徐光祐,张晓平,林学訚.复杂背景下的手势分割与识别[J].自动化学报,2002,28(2):256-261. 被引量:33
  • 2DARDAS N H, NICOLAS D G. Real-time hand gesture detection and recognition using bag-of-features and sup- port vector machine techniques [ J ]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (11) : 3592-3607.
  • 3李文生,解梅,姚琼.基于Laguerre正交基神经网络的动态手势识别[J].南京大学学报(自然科学版),2011,47(5):515-523. 被引量:4
  • 4WRIGHT J, GANESH A, YANG A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2009, 31(2) :210-227.
  • 5SUKA H, SINB B, LEE S. Hand gesture recognition based on dynamic Bayesian network framework [ J ]. Pat- tern Recognition, 2010, 43 (9) :3059-3072.
  • 6EMMANUEL J C, ROMBERG J K, TAO T. Stable sig- nal recovery from incomplete and inaccurate measure- ments [ J ]. Communications on pure and applied mathe- matics, 2006, 59 (8) : 1207-1223.
  • 7EMMANUEL J C, ELDARB Y C, NEEDELLA D, et al. Compressed sensing with coherent and redundant dictiona- ries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1) :59-?5.
  • 8YIN J, LIU Z, JIN Z, et al. Kernel sparse representation based classification[ J]. Neurocomputing, 2012, 77 ( 1 ) : 120-128.
  • 9AURELIE M, FUCHS J, GUILLEMOT C, et al. Sparse representations for spatial prediction and texture refine- ment[ J ]. J Visual Communication and Image Represen- tation,2011, 22(8) :712-720.
  • 10陈圣磊,陈耿,薛晖.最小二乘支持向量机分类的稀疏化方法研究[J].计算机工程,2011,37(22):145-147. 被引量:6

二级参考文献26

  • 1杨东侯,年晓红,杨胜跃.两种改进的BP神经网络学习算法[J].长沙大学学报,2004,18(4):54-57. 被引量:11
  • 2Alexander T C, Ahmed H S, Anagnostopoulos G C. An open source framework for real-time, incremental, static and dynamic hand gesture learning and recognition. Jacko J A. Human- Computer Interaction, Part II, HCII 2009. Berlin:Springer-Verlag, 2009, 5611: 123-130.
  • 3Jose' M M, Moya, Alvaro A, et al. Low-cost gesture-based interaction for intelligent environments. Omatu S. The Conference on Artificial 10^th International Work Neural Networks, Part II. Berlin: Springer-Verlag, 2009, 5518 7524755.
  • 4Hardy F, Javier R-del-S, Rodrigo V. Real-time hand gesture detection and recognition using boosted classifiers and active learning. Pirhonen A, Brewster S. 2007 IEEE Pacific-Rim Symposium on Image and Video Technology. Berlin.. Springer-Verlag, 2007, 4872 : 533-547.
  • 5Kaustubh S. Hand gesture modelling and recognition involving changing shapes and trajectories, using a predictive eigen tracker. Pattern Recognition Letters, 2007, 28:329-334.
  • 6Jiyoung P, Juneho Y. Efficient fingertip tracking and mouse pointer control for a human mouse. Crowley J L. The 3^rd International Con ference on Computer Vision Systems. Berlin:Springer-Verlag, 2003, 2626: 88-97.
  • 7Martin T H, Howard B D, Mark H B. Neural network design. Beijing: China Machine Press, 2002, 197-257.
  • 8Jagdish C P, Alex C K. Nonlinear dynamic system identification using Chebyshev functional link artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2002, 32(4):505-511.
  • 9Li M, He Y G. Nonlinear system identification using adaptive Chebyshev neural networks. Intelligent Computing and Intelligent Systems, 2010: 243- 247.
  • 10Suykens J A K,Vandewalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3): 293-300.

共引文献39

同被引文献32

  • 1郭兴伟,葛元,王林泉.基于形状特征的字母手势的分类及识别算法[J].计算机工程,2004,30(18):130-132. 被引量:11
  • 2Theodoridiss,模式识别[M].北京:电子工业出版社,2010.
  • 3Liwicki S,Everingham M. Automatic recognition offingerspelled words in british sign language [Cj //Computer Vision and Pattern Recognition Workshops,IEEE Compute Society Conference on IEEE. [s. 1.].IEEE, 2009:50-57.
  • 4Geetha M,Rohit Menon,Suranya Jayan, et al. Ges-ture recognition for american sign language with poly-gon approximation [C] // 2011 IEEE InternationalConference on Technology for Education* Chengal ?Tamil Nadu:IEEE,2011:241-245.
  • 5Isaacs J,Foo S. Hand pose estimation for americansign language recognition [C]// InSystem Theory,2004. Proceedings of the Thirty-Sixth SoutheasternSymposium on. [s. 1. ] : IEEE, 2004 : 132-136.
  • 6Uebersax D,Gall J,Van den Bergh M, et al. Real-time sign language letter and word recognition fromdepth datal32 - 1362011 [C]// IEEE InternationalConference on Computer Vision Workshops (ICCVWorkshops). Chennai,Tamil Nada: IEEE, 2011 :383-390.
  • 7Suka H,Sinb B,Lee S.Hand gesture recognition based on dynamic Bayesian network framework[J].Pattern Recognition,2010,43(9):3059-3072.
  • 8Weinberger KQ,Blitzer J,Saul LK.Distance metric learning for large margin nearest neighbor classification[EB/OL].[2013-03-03].http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2005_265.pdf.
  • 9Zondag JA,Gritti T,Jeanne V.Practical study on real-time hand detection[C]//3rd International Conference on Affective Computing and Intelligent Interaction and Workshops,2009:1-8.
  • 10Yang Quan.Chinese sign language recognition based on video sequence appearance modeling[C]//Industrial Electronics&Applications,2010:1537-1542.

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部