期刊文献+

新型Al-Cu-Li合金的热稳定性 被引量:2

Heat resistant properties of a new Al-Cu-Li alloy
下载PDF
导出
摘要 通过热暴露后的室温拉伸和高温拉伸试验及透射电镜显微组织观察,研究1种新型Al-Cu-Li合金的热稳定性。结果表明:合金在T8峰时效态下室温拉伸强度为647 MPa,强化相为大量的T1相,部分θ′相和少量S′相,其中T1相起主要作用;在低于150℃下热暴露200 h后,T1相的密度和尺寸没有明显变化,二次析出少量θ′相,强度略有升高;在150℃热暴露500 h后,T1相略微长大,另有细小T1相析出,强度仅下降5%;在200℃和250℃热暴露200 h后,T1相显著粗化,且有粗大平衡相θ析出,力学性能快速下降;合金的高温拉伸强度随拉伸温度的升高而降低,在200℃下的抗拉强度为506 MPa,可达到常温时的87.7%,明显优于传统耐热铝合金。 Heat resistant properties of a new Al-Cu-Li alloy were studied through tensile test at room-temperature after long time thermal exposure, tensile test at elevated temperatures and TEM microstructures observation. The results show that the tensile strength of alloy at T8 peak age is 647 MPa. The strengthening phases are a large number of T1 phase, some θ′ phase and small amounts of S′ phase, and among them T1 phase plays the main role. After exposing at temperatures below 150 ℃ for 200 h, the density and size of T1 phase don’t change obviously and small amounts of secondary precipitation ofθ′can be observed, thus improving the tensile properties slightly. After exposing at 150℃for 500 h, T1 phase coarsens slightly and other tiny T1 phase is precipitated, so the strength decreases by only 5%. When exposing at 200℃and 250℃, T1 phase coarsens remarkably and large equilibrium phaseθis precipitated;as a result, the tensile property decreases rapidly. The tensile strength at elevated temperatures decreases when increasing test temperature. The tensile strength at 200 ℃is 506 MPa, reaching 87.7%of the strength at room temperature, which is much higher than those of traditional aluminum alloy used at elevated temperature.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2013年第6期783-788,共6页 Materials Science and Engineering of Powder Metallurgy
基金 国家重点基础研究发展规划(973计划)资助项目(2012CB619503)
关键词 AL-CU-LI合金 热暴露 耐热性能 T1相 Al-Cu-Li alloy thermal exposure heat resistant properties T1 phase
  • 相关文献

参考文献18

  • 1POLMEAR I J, PONS G, BARBAUX Y, et al. After concorde: Evaluation of creep resistant Al-Cu-Mg-Ag alloys [J]. Materails Science and Technology, 1996, 15: 861-868.
  • 2LI Y G, BLENKINSOP P A, LORETTO M H, et al. Structure and stability of Precipitates in 500 ℃ exposed Ti-25V-15Cr-xAl alloy [J]. Acta Mater, 1998, 46: 5777-5794.
  • 3RIOS O, GOYEL S, KESLER M S, et al. An evaluation of high-temperature phases stability in the Ti-Al-Nb system [J]. Scripta Materialia, 2008, 60:156 159.
  • 4LIU Y B, LIU Z Y, LI Y T, et al. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging [J]. Mater Sci Eng A, 2008, 492: 333-336.
  • 5STARKE JR. E A. Aerospace materials for future technologies [J]. Journal of Japan Institute of Light Metals, 2001, 51 : 77-85.
  • 6GUILLAUMIN V. Aluminum-lithium alloys in airbus airframes [J]. Aerospace Engineering, 2005, 5: 8.
  • 7罗先甫,郑子樵,钟继发,张海锋,钟警,李世晨,李劲风.Mg、Ag、Zn多元微合金化对新型Al-Cu-Li合金时效行为的影响[J].中国有色金属学报,2013,23(7):1833-1842. 被引量:28
  • 8PLOMEAR I J, COUPER M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metallurgical Transactions A, 1988, 19(4): 1027-1035.
  • 9GAO X, NIE J F, MUDDLE B C. Secondary hardening in 2090 (Al-Cu-Li) alloy [C]// Proceeding of the 6th International Conference on Aluminum Alloys. Toyohashi: The Japan Institute of Light Metals, 1998: 651-656.
  • 10GABLE B M, PANA M A, SHIFLET G J, et al. The role of trace additions on the T1 coarsening behavior in Al-Li-Cu-X alloys [J] Materials Science Forum, 2002, 396/402: 699-704.

二级参考文献22

  • 1魏修宇,郑子樵,佘玲娟,陈秋妮,李世晨.Mg、Zn在2099铝锂合金中的微合金化作用[J].稀有金属材料与工程,2010,39(9):1583-1587. 被引量:37
  • 2CHATUVEDI M C, CHEN D L. Effect of specimen orientation and welding on the fracture and fatigue properties of 2195 A1-Li alloy[J]. Material Science and Engineering A, 2004, 389: 465-469.
  • 3BAIRWA M L, DESAI S G, DATE P P. Identification of heat treatments for better formability in an aluminum lithium alloy sheet[J]. Journal of Materials Engineering and Performance, 2005, 14(5): 623-633.
  • 4VANDERKOOI D C, PARK W, HILTON M R. Characterization of cryogenic mechanical properties of aluminum-lithium alloy C458[J]. Scripta Materialia, 1999, 41(11): 1185-1190.
  • 5ROMIOS M, TIRASCHI R, PARRISH C, BABEL H W, OGREN J R, SAID S E. Design of multistep aging treatments of 2099(C458)A1-Li alloy[J]. Journal of Materials Engineering and Performance, 2005, 14(5): 641-646.
  • 6SAE-AMS4206B. Aluminum alloy, plate (7055-T7751), 8.0Zn-2.3Cu-2.0Mg-0.16Zr, solution heat treated, stress relieved,and overaged[S]. SAE Aerospace Council, 2011.
  • 7NIESSEN A K, DE BOER F R, BOOM R, CHATEL P F, MATTENS W C M, MIEDEMA A R. Model predictions for the enthalpy of formation of transition metal alloys II[J]. Calphad, 1983, 7(1): 51-70.
  • 8HIROSAWA S, SATO T. Atomistic behavior of microalloying elements in phase decomposition of A1 based alloys[J]. Materials Science Forum, 2002, 396/402: 649-654.
  • 9ITOH G, CUI Q, KANNO M. Effects of a small addition of magnesium and silver on the precipitation of T~ phase in an A1-4%Cu-l.l%Li-0.2Zr alloy[J]. Materials Science Engineering A, 1996, 221: 128-137.
  • 10HIROSAWA S, SATO T, KAMIO A. Effects of Mg addition on the kinetics of low-temperature precipitation in A1-Li-Cu-Ag-Zr alloys[J]. Materials Science Engineering A, 1998, 242: 195-201.

共引文献27

同被引文献26

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部