期刊文献+

TiC/316L不锈钢复合材料的高温氧化行为 被引量:4

High temperature oxidation behavior of TiC/316L stainless steel composites
下载PDF
导出
摘要 采用粉末冶金法制备TiC/316L不锈钢复合材料(TiC质量分数为10%),研究该复合材料在700~900℃空气中的恒温氧化行为,分析氧化温度和氧化时间对其氧化行为的影响,并对氧化膜表面的相组成、形貌以及氧化机制进行分析。结果表明:在700~900℃氧化条件下,TiC/316L不锈钢复合材料表面形成的氧化膜以TiO2、Cr2O3、Fe3O4和FeCr2O4为主要组成相,且随氧化时间的延长,TiO2和FeCr2O4的衍射峰逐渐变强,试样在900℃氧化时,氧化膜中的Fe3O4会进一步与O2反应生成Fe2O3。温度从700℃升高至900℃,氧化膜表面铁的氧化物由细条状变为片状,继而发展成短柱状;而Ti的氧化物由大块结状发展成颗粒状,并且颗粒的尺寸随温度的升高而增大。 Powder metallurgic method was used to prepare TiC/316L stainless steel composite (TiC mass fraction is 10%) and the high temperature oxidation behavior of the TiC/316L composite at 700~900 ℃ in air was investigated. The effects of oxidizing temperature and time on the oxidation behavior of the TiC/316L composite were studied, and the reaction products in the oxidation layer as well as the surface morphology of oxidation layer were analyzed. The results show that an oxidation film mainly consisting of TiO2, Cr2O3, Fe3O4 and FeCr2O4 has formed at 700~900 ℃, and the intensities of TiO2 and FeCr2O4 diffraction peaks increase gradually with increasing oxidation time;at 900℃in air, Fe3O4 reacts with O2 to form Fe2O3. From 700 ℃ to 900 ℃, the surface morphology of iron oxide in the oxidation film developes from thin strips, gradually to sheets, and finally forms short columns, while the shape of Ti oxide changed from large knot-shaped to grainy, and the size of particles increases with increasing oxidizing temperature.
出处 《粉末冶金材料科学与工程》 EI 北大核心 2013年第6期789-795,共7页 Materials Science and Engineering of Powder Metallurgy
基金 湖北理工学院优秀青年科技创新团队资助计划项目(13xtz02)
关键词 316L不锈钢 复合材料 高温氧化 316L stainless steel composites high temperature oxidation
  • 相关文献

参考文献12

  • 1L1N S J, XIONG W H. Microstructure and abrasive behaviors of TiC-316L composites prepared by warm compaction and microwave sintering [J]. Advanced Powder Technology, 2012, 23(3): 419-425.
  • 2郭振文,张文泉,刘雪峰,谢建新.316L不锈钢/Y-PSZ复合材料摩擦磨损特性[J].北京科技大学学报,2008,30(7):740-745. 被引量:10
  • 3蔺绍江,熊惟皓,黄玉柱.Mo对TiC/316L不锈钢复合材料组织和性能的影响[J].粉末冶金材料科学与工程,2011,16(5):716-722. 被引量:2
  • 4IMBABY M F, JIANG K. Fabrication of free standing 316-L stainless steel-Al2O3 composite micro machine parts by soft moulding [J]. Acta Materialia, 2009, 57(16): 4751-4757.
  • 5BACON D H, EDWARDS L, MOFFATT J E, et al, Fatigue and fracture of a 316 stainless steel metal matrix composite reinforced with 25% titanium diboride [J]. International Journal of Fatigue, 2013, 48(3): 39-47.
  • 6IMBABY M F, JIANG K. Stainless steel-titania composite micro gear fabricated by soft moulding and dispersing technique [J]. Microelectronic Engineering, 2010, 87(5/8): 1650-1654.
  • 7BAUTISTA A, VELASCO F, ABENOJAR J. Oxidation resistance of sintered stainless steels: effect of yttria additions [J] Corrosion science, 2003, 45(6): 1343-1354.
  • 8HUI X D, YANG Y S, WANG Z F, et al. High temperature creep behavior of in-situ TiC particulate reinforced Fe-Cr-Ni matrix composite [J]. Materials Science and Engineering: A, 2000, 282(1/2): 187-192.
  • 9VESEL A, MOZETIC M, DRENIK A, et al. High temperature oxidation of stainless steel AISI 316L in air plasma [J]. Applied Surface Science, 2008, 255(5 Part 1): 1759-1765.
  • 10吴钱林,孙扬善,薛烽,周健.原位合成TiC弥散强化304不锈钢的高温氧化行为[J].材料热处理学报,2009,30(5):177-181. 被引量:5

二级参考文献35

共引文献14

同被引文献32

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部