摘要
以轴承故障诊断为应用背景,基于低维投影能够反映原高维数据某些特征的思想,提出了一种基于投影的特征选择方法。该方法利用遗传算法找到最能反映样本分类特性的投影方向,并利用该方向剔除与投影值无关的特征指标,克服了传统特征选择方法在高维空间中计算复杂的缺点,有效避免了"维数灾难"。仿真结果表明,该方法能够在不降低投影值类别特性的情况下,有效降低样本数据维数,完成特征选择,提高了分类效率及准确率。
Taking fault diagnosis for bearing as application background,a method of feature selection based on projection was proposed on basis that low-dimensional projection can reflect some features of high-dimensional data.The method uses genetic algorithm to search the projection direction which can reflect classificatory characteristics of samples,and removes those features which unrelated to the projection by the projection direction.The method overcomes some shortcomings of complex calculations of conventional methods,and avoids"the curse of dimensionality"effectively.The simulation result shows that the method can improve efficiency and accuracy of classification by decreasing the dimension of the data without reducing the classificatory characteristics.
出处
《工矿自动化》
北大核心
2014年第1期63-67,共5页
Journal Of Mine Automation
基金
寺河矿科研项目(晋ZJD-2009-054)
关键词
轴承故障诊断
特征选择
低维投影
高维数据
遗传算法
bearing fault diagnosis
feature selection
low-dimensional projection
high-dimensional data
genetic algorithm