期刊文献+

一种基于缝隙结构的小型双频段射频能量接收天线 被引量:3

A Small Dual-frequency Antenna based on Slot Structure for Wireless Energy Collection
原文传递
导出
摘要 随着超低功耗芯片技术的发展,无线传感器节点的功耗已进入微瓦(μW)级范围,使低功耗传感器利用周围环境中的射频无线能量为自身供电成为可能。提出了一种用于无线传感器节点的小型射频能量接收天线。该天线采用微带缝隙结构,基于缝隙天线设计理论,应用全波电磁场工具对其进行了设计及仿真优化,并获得了该结构谐振点随尺寸变化的一般规律。在常用FR4材料的小尺寸双面PCB板上,通过开槽加载和微带线馈电方法使天线可以同时工作在GSM和ISM两个频段。在1.9 GHz和2.4 GHz频率点上,天线的回波损耗分别为-39.4 dB和-20.8 dB,最大增益分别达到1.4 dBi和2.9 dBi,测试与仿真结果基本吻合。该天线含地平面在内的尺寸为5 cm×5 cm,实现成本低,可同时接收两个频段的射频能量,有效地扩展了频率适应范围,提高了能量接收效率。 With the technical development of ultra-low power consumption chip technology, the power consumption of wireless sensor node is reduced to a micro-watt(μW) magnitude, so it is possible for the sensor node to power itself by collecting ambient wireless energy. The paper describes a small energy-collec- ting antenna for wireless sensor node. With microstrip slot structure and based on the slot antenna theory, this antenna is simulated and optimized by full-wave electromagnetic field tools, and the general rules for the relations between resonance frequency and size are acquired. By slotting and feeding microstrip on the small FR4 PCB, the antenna can work at the dual-frequency of GSM and ISM, and has the return losses of -31.6 dB and -20.8 dB respectively at 1.9GHz and 2.4 GHz, the maxim gain of the antenna is 1.5 dBi and 2.9 dBi respectively. The measurement results of antenna fairly agree with the simulation results. The antenna including the ground plane is 5 cm×5 cm in size and low in cost. Meanwhile, this antenna can receive RF energy at dual-frequency, thus could effectively expand the frequency range and improve the efficiency of the energy collection.
出处 《通信技术》 2014年第1期106-110,共5页 Communications Technology
基金 江苏大学高级人才启动基金项目(No.11JDG123 No.11JDG057) 江苏高校优势学科建设工程资助项目(PAPD)~~
关键词 能量收集 双频 微带天线 缝隙结构 energy collection dual-frequency microstrip antenna slotting
  • 相关文献

参考文献15

二级参考文献106

共引文献57

同被引文献34

  • 1HUANG T C, HSIEH C Y, YANG Yao-yi, et al. A Bat- tery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control [ J ]. IEEE Journal of Solid- State Circuits,2012,47(04) :852-862.
  • 2ZHANG Yan-qing, ZHANG Fan, SHAKHSHEER Y, et al. A Batteryless 19 mW MICS/ISM-Band Energy Harvesting Body Sensor Node SeC for ExG Applications [ J ]. IEEE Journal of Solid-State Circuits,2013,48(01 ) :199-213.
  • 3OUDA M H,ARSALAN M,MARNAT L, et al. 5.2-GHz RF Power Harvester in 0.18-μm CMOS for Implantable Intraocular Pressure Monitoring [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(05): 2177-2184.
  • 4HARB A. Energy Harvesting : State- of- the - all [ J ]. Renewable Energy, 2011(36): 2641-2654.
  • 5BROWN W. The History of Power Transmission by Radio Waves [ J]. IEEE Transactions on Microwave Theory and Techniques, 1984, MTr-32 (09) : 1230-1242.
  • 6WU Ke, CHOUDHURY D, MATSUMOTO H. Wireless Power Transmission Technology and Applications [ J ]. Proceedings of the IEEE, 2013, 101 (06) : 1271-1275.
  • 7GARNICA J, CHINGA R A, LIN J. Wireless Power Transmission: From Far Field to Near Field [ J ]. Pro- ceedings of the IEEE, 2013, 101(06) : 1321- 1331.
  • 8BERND S II, CHANG Kai. Microwave Power Transmis- sion: Historical Milestones and System Components [ J ]. Proceedings of the IEEE, 2013, 101 (06) : 1379-1396.
  • 9PINUELA M, MITCHESON P D, LUCYSZYN S. Am- bient RF Energy Harvesting in Urban and Semi-Urban Environments [ J ]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(07): 2715-2726.
  • 10AL-LAWATI M, AL-BUSAIDI M, NADIR Z. RF En- ergy Harvesting System Design for Wireless Sensors [ C ]//9th International Multi- Conference on Systems, Signals and Devices. Chemnitz, Germany: 1EEE Press, 2012 : 1-4.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部