期刊文献+

基于混沌萤火虫优化的小波多模盲均衡算法 被引量:1

Wavelet Multi-modulus Blind Equalization Algorithm Based on Chaos Glowworm Optimization
下载PDF
导出
摘要 采用多模盲均衡算法(MMA)处理高阶正交振幅调制QAM信号时,存在收敛速度慢、稳态误差大、容易陷入局部最优等问题。为此,提出一种基于混沌萤火虫优化的正交小波多模盲均衡算法(CGSO-WT-MMA)。该算法将具有良好全局搜索能力的萤火虫算法和具有较强局部搜索能力的混沌算法相结合,用以优化均衡器权向量,并引入正交小波变换降低信号自相关性,以改善收敛性能。仿真实验结果表明,与MMA算法相比,该算法均方误差降低近4 dB,收敛速度加快近5 000步,稳态性能明显提高。 Multi-Modulus Algorithm(MMA) used to equalize high-order Quadrature Amplitude Modulation(QAM) has many disadvantages, such as slow convergence rate, large mean square error, and easily immerging in partial minimum. In order to overcome the problems, orthogonal Wavelet Transform Multi-modulus blind Equalization Algorithm based on Optimization of Chaos Glowworm Swarm Optimization(CGSO-WT-MMA) is proposed. In the proposed algorithm, MMA is integrated with CGSO and WT, the de-correlation ability of WT is used to reduce the signal autocorrelation, and the global search ability of GSO algorithm integrating with the local search ability of chaos algorithm is used to optimize the equalizer weight vector. Simulation experimental results show that compared with MMA algorithm, mean square error of the algorithm decreases 4 dB, convergence rate speeds up 5 000 step, and its steady state performance has obvious imorovement.
作者 高敏 郭业才
出处 《计算机工程》 CAS CSCD 2014年第1期213-217,共5页 Computer Engineering
基金 高等学校全国优秀博士学位论文作者专项基金资助项目(200753) 安徽省高等学校自然科学基金资助项目(KJ2010A096) 安徽高校省级科研基金资助项目(KJ2011B162) 江苏省"六大人才高峰"培养基金资助项目(2008026) 淮南职业技术学院院级科研基金资助项目(HKJ10-3)
关键词 盲均衡 水声信道 正交小波变换 人工萤火虫群 混沌优化 智能优化 blind equalization underwater acoustic channel Orthogonal Wavelet Transform(OWT) artificial glowworm swarm chaosoptimization intelligent optimization
  • 相关文献

参考文献5

二级参考文献46

  • 1刘国军,唐降龙,黄剑华,刘家峰.基于模糊小波的图像对比度增强算法[J].电子学报,2005,33(4):643-646. 被引量:19
  • 2孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 3高尚,杨静宇.混沌粒子群优化算法研究[J].模式识别与人工智能,2006,19(2):266-270. 被引量:76
  • 4Kennedy J, Eberhart R C. Particle swarm optimization [C]//Proceedings of IEEE International Conference on Neural Networks. Perth,Australia : [s. n.], 1995,4: 1942-1948.
  • 5Maurice Clerc. The swarm and the queen : towards a deterministic and adaptive particle swarm optimization [C]//Proc Congress on Evolutionary Computation. Washington DC: Springer, 1999:1927-1930.
  • 6Lovbjerg M,Rasmussen T K,Krink T. Hybrid particle swarm optimization with breeding and subpopulations [C]//Proe Genetic and Evolutionary Computation Conf. San Francisco: Morgan Kaufmann Publishers,2001 : 469-476.
  • 7Liu B, Wang L, Jin Y H, et al. Improved particle swarm optimization combined with chaos [J]. Chaos Solitons & Fractals (S0960-0779), 2005, 25 (21): 1261-1271.
  • 8Shi Y, Eberhart R C. Parameter selection in particle swarm optimization[C]//Proceedings of the 7th International Conference on Evolutionary Programming VII LNCS. New York: Springer-Verlag, 2004, 1447:591-600.
  • 9Coelho Ld S, Mariani V C. A novel chaotic particle swarm optimization approach using He'non map and implicit filtering local search for economic load dispatch[J]. Chaos, Solitons & Fractals, 2007, 27(2) : 279-307.
  • 10Hyoung-Nam Kim, Sung lk Park, Jae Moung Kim. Near-optimum blind decision feedback equalization for ATSC digital television Receivers[J].ETRI Journal,2004,26(2) :101 - 111.

共引文献51

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部