期刊文献+

自适应CDPF及其在组合导航中的应用 被引量:3

Adaptive CDPF for Integrated Navigation
下载PDF
导出
摘要 在组合导航系统中,高精度的导航算法对导航解算精度有非常重要的影响。为提高捷联惯导(SINS)/合成孔径雷达(SAR)组合导航系统定位的解算精度,针对粒子滤波中密度分布函数难以选取的问题,提出一种新的自适应中心差分粒子滤波(CDPF)算法。通过中心差分卡尔曼滤波来获取状态均值和协方差阵,计算获得自适应因子,并利用得到的因子自适应的调节均值和方差信息,得到一种参数可调节的重要性密度分布函数,提高了滤波精度,使滤波性能明显改善,能更好地解决非线性非高斯系统模型的滤波问题。将提出的算法应用于SINS/SAR组合导航系统中,仿真结果表明,改进的滤波算法能提高导航定位的解算精度,系统优化性能明显优于扩展卡尔曼滤波、粒子滤波以及中心差分粒子滤波。 In the integrated navigation system, high precision navigation algorithms have an important influence on navigation calculation precision. In order to improve the navigation positioning accuracy of the strapdown inertial navi- gation system( SINS)/synthetic aperture radar(SAR) integrated navigation systems and aim at the particle filtering problem that it is difficult to select the importance density function, this paper presented an adaptive central difference particle filtering (CDPF) algorithm by adopting central difference Kalman filtering to obtain state estimation and co- variance, and then the adaptive factor calculated can adaptively regulate the estimation and covariance information. It provides adjustable parameters of importance density function and is more suitable for filtering calculation based on nonlinear and non-Gaussian models, through considering the latest measurement information and improving the parti- cle filtering performance. The proposed algorithm was applied to SINS/SAR integrated navigation system. Simulation results demonstrate that the adaptive CDPF outperforms the extended Kalman fihering, particle filtering and CDPF in terms of positioning calculation accuracy in navigation system.
出处 《计算机仿真》 CSCD 北大核心 2014年第1期45-48,92,共5页 Computer Simulation
基金 国家自然科学基金资助(61174193) 国家自然科学基金资助(60974146)
关键词 粒子滤波 中心差分滤波 自适应中心差分粒子滤波 组合导航 Particle filtering Central difference Kalman fihering Adaptive central difference particle filtering Integrated navigation
  • 相关文献

参考文献11

  • 10 Cappe, S J Godsill, E Moulines. An overview of existing meth-ods and recent advances in sequential Monte Carlo[ J] . IEEE Pro-ceedings, 2007,95( 5) :899-924.
  • 2Simon S 歷歷kk I jSenior Member. On Unscented Kalman Filte-ring for State Estimation of Continuous - Time Nonlinear Systems[J]. Transactions On Automatic Control, 2007 , 52 ( 9 ) : 1631 -1641.
  • 3Magnus Norgaard, Niels K Poulsen, Ole Ravn. New developmentsin state estimation for nonlinear systems[ J]. Automatica,2000,36: 1627-1638.
  • 4侯代文,殷福亮.基于迭代中心差分卡尔曼滤波的说话人跟踪方法[J].电子与信息学报,2008,30(7):1684-1689. 被引量:10
  • 5R van der Merwe. Sigma-Point Kalman Filters for probabilistic in-ference in dynamic state - space models [D]. PhD thesis of OGISchool of Science & Engineering at Oregon Health & Science Uni-versity ,2003.
  • 6N Gordon,D Salmond,A Smith. Novel Approach to nonlinear Non-Gaussian Bayesian State estimation [ J ]. IEEE Proceedings - F,1993,140(2) ;107-113.
  • 7A Doucet, eds. A tutorial on particle filtering and smoothing: fif-teen years later [ M ]. In Handbook of Nonlinear Filtering, Cam-bridge :Cambridge University Press, 2009.
  • 8J V Candy. Bootstrap particle filtering[ J]. IEEE Signal ProcessingMagazine, 2007,24(4): 73-85.
  • 9M J Yu, J G Lee, H W Park. Comparison of SDINS in - Flightalignlnent using equivalent error model [ J ] . IEEE Tran on AES,1999,35(3) :I046-1053.
  • 10谷雨,高社生,阎海峰.随机加权粒子滤波[J].计算机仿真,2011,28(8):211-214. 被引量:4

二级参考文献35

  • 1郑忠国.随机加权法[J].应用数学学报,1987,(2):247-253.
  • 2Orguner Umut, Gustafsson Fredrik. Risk - sensitive particle illters for mitigating sample impoverishment[ C]. IEEE Transactions on Signal Processing, 2008,56(10) :5001 -5012.
  • 3Gao Shesheng, Jiao Yalin, Gu Yu, Yongmin Zhong. Error-Resistant Adaptive Filtering for INS/SAR Integrated Navigation System[ C ]. 2nd International Congress on Image and Signal Processing, Tianjin, China,17 - 19, October 2009. 3898 -3901.
  • 4M S Arulampalam, et al. A tutorial on particle filters for online nonlinear/non - Gaussian Bayesian tracking[ C]. IEEE Trans Signal Processing, 2002,50(2) :174 -188.
  • 5A Doucet, S Godsill, C Andrieu. On sequential Monte Carlo methods for Bayesian fihering[ J]. Statistics and Computing, 2000,10: 197 - 208.
  • 6J C Spall. Estimation via Markov chain Monte Carlo [J]. IEEE Control Systems Magazine, 2003,23 (2) :34 -45.
  • 7A Doucet, N de Freitas, N Gordon. Sequential Monte Carlo Methods in Practice[ M]. New York :Springer - Verlag, 2001.
  • 8N J Gordon, D J Salmond, A F M. Smith. Novel approach to non- linear/non- Gaussian Bayesian state estimation[ C ]. IEEE Proc Inst Elect Eng F, 140(2) :107 -113, 1993.
  • 9Gao Shesheng, Zhang zhenlong, Yang Bo. The random weighting estimate of quantile process [J]. Information Science,2004,164 ( 1 -4) : 139 - 146.
  • 10Gao Shesheng, et al. Random weighting estimation of parameters in generalized Gaussian distribution [ J ]. Sciences ,2008,178 (9) : 2275 - 2281.

共引文献18

同被引文献26

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部