期刊文献+

一种软件可行性评估模型的仿真研究

Software Simulation Research of Feasibility Evaluation Model
下载PDF
导出
摘要 通过对软件构件演化对软件系统的可靠性和系统行为的一致性进行研究,有利于掌握软件的性能。当前的软件功能越来越多,可行性评估指标也日趋复杂,很难在根据几个单一的指标完成评估,传统的评估方法无法在指标存在制约的情况下,建立的评估模型很难准确描述制约关系,造成后期评估的不准确。通过研究软件构件演化的可靠性评估模型和前提条件,并在满足软件系统一致性的前提下,提出了AHP层次分析方法的软件可行性评估模型,首先利用目标指标对可执行方案的有利度矩阵和决策矩阵进行生成,然后依据各方案的权重进行目标指标下的参数求解,最后对各方案进行可行性优先排序,从而得到具有最佳预期收益的软件构件演化方案。仿真分析表明,改进方法得到的方案是最优且可行的。 The software component evolution of the software system reliability and the consistency of the system behavior were discussed. To satisfy the software system under the premise of consistency, a software system reliability evaluation model was proposed and a software the feasibility evaluation model based on AHP level analysis method were proposed. In this model, first of all, the favorable degrees matrix and the decision matrix were created based on the executable plan using the goal index, and then, the parameters were solved in target index based on the weight of each scheme. Lastly, the feasibility plan to was prioritized, and then the software component evolution plan was ob- tained with the expected benefits. The example shows that the method is optimal and feasible.
作者 汤效琴
出处 《计算机仿真》 CSCD 北大核心 2014年第1期278-281,共4页 Computer Simulation
基金 国家自然科学基金资助项目(60803104)
关键词 软件构件演化 系统行为一致性 软件可行性评估 Software component evolution System behavior consistency Software feasibility evaluation
  • 相关文献

参考文献5

二级参考文献24

  • 1J Kennedy and R Eberhart. Particle Swarm Optimization [ C ]. Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995, 4.
  • 2R C Eberhart and Y Shi. Evolving artificial neural networks [ C ]. Proc. 1998 Int. Conf Neural Networks and Brain, Beijing, P.R. C., 1998.
  • 3S Chen, C F N Cowan and P M Grant. Orthogonal least squares learning algorithm for radial basis function neural networks [J].IEEE Trans. Neural Networks, 1991,2(2) : 302 -309.
  • 4H Akaike. A new look at the statistical model identification [ J ]. IEEE Trans. Automatic Control, 1974, AC - 19:716 - 723.
  • 5X Hong, C J Harris, S Chen and P M Sharkey. Robust nonlinear model identification methods using forward regression [ J ]. IEEE Trans. Syst. , Man, Cybem. , A, Syst. Humans, 2003, 33(4) : 514 -523.
  • 6S Chen, X Hong and C J Harris. Sparse kernel regression modeling using combined locally regularized orthogonal least squares and D - optimality experimental design [ J ]. IEEE Trans. Automatic Control, 2003, 48, (6): 1029-1036.
  • 7X Hong, C J Harris. Nonlinear model structure detection using optimum experimental design and orthogonal least squares[ J]. IEEE Trans. Neural Networks, 2001, 12(2) : 435 -439.
  • 8A C Atkinson and A N Donev. Optimum experimental designs [M]. Oxford, U. K. : Clarendon, 1992.
  • 9Y Shi and R C Eberhart. A modified particle swarm optimizer [ C ]. Proc. IEEE Int. Conf. Evol. Comput. , Anchorage, Alaska, 1995.
  • 10S Chen, E S Chng and K Alkadhimi. Regularized orthogonal least squares algurithm for constructing radial basis function networks [J]. Int. J. Contr. ,1996, 64(5): 829-837

共引文献307

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部