期刊文献+

基于SOM-VPRS的平衡机故障诊断

Application of Equilibrator Fault Diagnosis Based on SOM-VPRS
下载PDF
导出
摘要 针对平衡机故障的特点,采集了振动信号进行故障诊断;设计了故障信息采集系统,解决了故障信息提取困难的问题,减少了噪声信号;融合自组织(SOM)网络和变精度粗糙集(VPRS)形成了SOM-VPRS算法,实现了平衡机的故障诊断。运用SOM网络进行了连续属性的离散化,采用变精度粗糙集的近似依赖模型进行属性约简,得到故障诊断决策规则,属性约简后,属性集由20个减少为7个,规则集由70个减少为34个,计算复杂度降低;对决策规则进行了验证,诊断正确率可以达到95%以上,且模型和算法具有普遍适用性。 According to the fault characteristics of equilibrator, vibration signals were collected. By designing a collecting system, prob lems of difficult collecting were dissolved and noise signals were reduced. The integration of SOM (Self--Organizing Map) and VPRS (Vari able Precision Rough Set), coming to a new algorithms called the SOM--VPRS. The approach is realized by applying SOM to diseretive continuous attributes, using property of approximation dependency of VPRS to carry through attribute reduction and concluding decision--mak ing rules. The attribute set is reduced from 20 to 7, and the rule set is reduced from 70 to 34. So the computational complexity is decreased. Faults were given to make sure the decision--making rules good, the result said that the correct diagnosis rate can reach more than 95 %. The model and method are both of widely using.
出处 《计算机测量与控制》 北大核心 2014年第1期34-35,38,共3页 Computer Measurement &Control
基金 航空科学基金资助项目(20120196006)
关键词 故障诊断 平衡机 振动信号 SOM—VPRS 决策规则 fault diagnosis equilibrator vibration signals SOM--VPRS decision making rules
  • 相关文献

参考文献4

二级参考文献41

  • 1张雪峰,石凡,郝丽娜,张庆灵.粗糙集数据分析系统的程序实现[J].辽宁石油化工大学学报,2004,24(3):66-69. 被引量:5
  • 2桑妍丽.变精度粗糙集下基于信息熵的属性约简算法[J].山西师范大学学报(自然科学版),2005,19(3):27-30. 被引量:8
  • 3庾慧英,刘文奇.变精度粗糙集模型中β取值范围的确定[J].昆明理工大学学报(理工版),2005,30(6):109-111. 被引量:6
  • 4[1]Pawlak Z.Rough sets[J].International journal of information and computer sciences,1982,11 (5):341 -356.
  • 5[2]Pawlak Z.Rough sets-theoretical aspects of reasoning about data[M].London:Kluwer academic publishers,1991.
  • 6[3]Ziarko W.Variable precision rough set model[J].Journal of computer and system science,1993,46(1):39-59.
  • 7[4]An A,Shan N,Chan C,et al.Discovering rules for water demand prediction:an enhanced rough _ set approach[J].Engineering applications in artificial intelligence,1996,9(6):645-653.
  • 8[5]Wong S K M,Ziarko W.On optional decision rules in decision tables[J].Bulletion of polish academy of science,1985,33:693-696.
  • 9[6]Jelonek J,Krawiec K,Slowinski R.Rough set reduction of attributes and their domains for neural networks[J].Computational intelligence,1995,11 (2):339-347.
  • 10Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Science, 1993, 46 (1) : 39-59.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部