期刊文献+

智能森林多状态视觉监控系统的设计与实现 被引量:3

Design and Implementation of Multi-state Intelligent Visual Surveillance System of Forest
下载PDF
导出
摘要 针对现有森林监测系统对森林的多样性事件识别功能不足的问题,设计了一套基于计算机分布式视觉模型的森林病虫害监控系统;监控系统设计了底层控制站CCD森林视觉信息采集模块和DP总线信息传递模块,准确、实时地检测出虫害、干旱、风化等森林多样性事件,增加了系统功能;利用遥感森林监控图像的均值作为初始背景;根据不同森林灾害事件获取背景图像进行实时更新;利用森林光谱特征就距离算法获取差分图像,并进行形态学处理;根据DSP处理器得到的二值图上植物目标的特征,判断发生了哪类森林灾害事件;针对该系统测试表明,系统在对高空采集的遥感森林图像的病虫害监测中,对红粉、白粉、黑星和白板的分类正确率达100%,对干旱和风化等灾害事件的识别正确率达80.00%和93.33%,适用于信息融合型的森林智能监控系统应用。 In view of the existing forest pest and disease monitoring system on disease and insect diversity event the problem of insuffi cient recognition, and designed a set of the forest pest monitoring model based on distributed computer vision system. The underlying control station monitoring system design CCD visual information collection modules and forest DP bus communication module, accurate, real time detection of pests, drought, weathering and other forest diversity, strengthen the function of system. Composed of DSP central processing module. Use more natural forest monitoring image mean value as the initial background; According to the different forest disasters access to real--time updates the background image; Distance algorithm to obtain difference images using forest spectral characteristics, and morpho logical processing; Based on DSP processors are binary plants on the drawing of the characteristics of the target and determine what type of forest disasters happened. Experimental results show that the system for the system of forest remote sensing image in the high altitude collec tion of plant diseases and insect pests monitoring, the stars red pink, white, black and white board was 100%, and the classification accuracy of downy mildew and disease--free classification accuracy of 80.00% and 80. 00%, applied to information fusion of intelligent monitoring system of forest.
作者 李彦
机构地区 新乡学院教务处
出处 《计算机测量与控制》 北大核心 2014年第1期136-138,共3页 Computer Measurement &Control
关键词 遥感图像 计算机视觉 病虫害识别 remote sensing image computer vision plant diseases and insect pests identification
  • 相关文献

参考文献5

  • 1f周德新.樊智勇.环境泄漏监测与控制技术的研究[J].计算机测繁与控制,2005,13:237-240.
  • 2t?,ayram S, Senear H T, Memon N. An Efficient and Robust Meth od For Detecting Copy-Move Forgery [C]. In: Proceedings of 2009 IEEE International Conference on acoustics, speech and signal processing. Taipei: IEEE, 2009:1053 1056.
  • 3许晓玲.基于计算机视觉的逃逸车辆识别系统设计与研究[J].科技通报,2012,28(11):175-178. 被引量:27
  • 4于蕾艳,林逸,施国标.线控转向系统动力学模型的研究[J].计算机仿真,2008,25(6):251-253. 被引量:15
  • 5Tomasi C, Kanade T. Shape and motion from image streams: a fac- torization method [J] International Journal of Computer Vision, 1992, 9 (2): 137 154.

二级参考文献10

  • 1陶剑文.一种分布式Web日志挖掘系统的设计与实现[J].计算机仿真,2006,23(10):109-112. 被引量:26
  • 2左建令.汽车电子转向系统控制方法研究[D].长春:吉林大学,2005.
  • 3Yao. System and method of controlling vehicle steer - by - wire systems[ R]. United states:US 6,694,239 B1 ,Feb. 17,2004.
  • 4Shoji Asai. Development of Steer - by - Wire system with force feedback using a disturbance observer[ C ]. SAE paper, 2004-01 - 1100.
  • 5E Ono. Robust stabilization of vehicle dynamics by active front wheel steering control [ C ]. IEEE 35^th conference, 1996. 1777 - 1782.
  • 6Vincent Nguyen. Vehicle handling, stability, and bifurcation analysis for nonlinear vehicle models [ D ]. University of Maryland ,2005.
  • 7J Park. Enhancement of vehicle handling dynamics model using global searching algorithm and estimation theory[ D]. Ohio: Ohio State University,2002.
  • 8T Bray,J Paoli,C M Sperberg'-McQueen. Extensible Markup Language (XML)I.0 (Second Edition)[M].W3C Recommendati-on. October 2000:21-24.
  • 9S Abiteboul,P Bnueman,D Suciu.Data on the Web [M]. Morgan Kaufmann Publishers. 2000:89-93.
  • 10Charles X. Ling, Qiang Yang, Jianning Wang and Shichao Zhang. Decision Trees with Minimal Costs [C]//. Proceedings of 2004 International Conference on Machine Learning (ICML'2004), 2004.

共引文献38

同被引文献19

  • 1谭泽富,雷国平,蔡黎.GPRS在农业旱情监测系统中的应用研究[J].农机化研究,2007,29(11):187-189. 被引量:10
  • 2Xia C, Lee J M, Li Y, et al. In situ detection of small-size insect pests sampled on traps using multifractal analysis [J]. Optical Engineering, 2012, 51(2): 027001-1-027001-12.
  • 3Xia C, Chon T S, Ren Z, et al. Automatic identification and counting of small size pests in greenhouse conditions with low computational cost [J]. Ecological Informatics, 2015, 29(9)i 139-146.
  • 4Chung B K, Xia C, Song Y H, et al. Sampling of bemisia tabaci adults using a pre-programmed autonomous pest con-trol robot I-J]. Journal of Asia-Pacific Entomology, 2014, 17(4) : 737-743.
  • 5Bremond F, Thonnat M, Moisan S, et al. On-line video recognition and counting of harmful insects [C-. Pattern Recognition (ICPR), 20th International Conference on IEEE, 2010: 4068-4071.
  • 6Solis-Sdnchez L O, Castafieda-Miranda R, Garcia-Escalan- te J J, et al. Scale invariant feature approach for insect monitoring I-J]. Computers and Electronics in Agricul- ture, 2011, 75(1): 92-99.
  • 7Li Chunming, Xu Chenyang, Gui Changfcng, et al. Dis- tance regularized level set evolution and its application to image segmentation [J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.
  • 8任争毅,潘娟娟,顾沛雯,杨钧,苏宁国,任爱民,马占鸿.设施园艺病虫害远程诊断与监控系统的构建[J].西北农业学报,2010,19(3):62-65. 被引量:12
  • 9赵相瑜,袁继敏.基于图像分析的森林火灾监测系统[J].攀枝花学院学报,2010,27(3):44-47. 被引量:3
  • 10付兵.物联网精准农业系统在瓜果种植中的应用[J].科技通报,2014,30(1):106-109. 被引量:9

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部