期刊文献+

基于聚类和Skyline计算的云计算服务选择

Service Selection for Cloud Computing Environment Based on Skyline Computing and Clustering
下载PDF
导出
摘要 针对云计算环境中存在着大量功能相同或类似而服务质量不同的服务,而实现对这些服务选取的方法往往具有效率低和实时性差的缺点,为此,提出了一种基于聚类和Skyline计算的云计算服务选择方法;首先,对各抽象服务类采用相似度矩阵进行分类,选取其中与用户服务请求最匹配的分类作为候选分类;然后,通过Skyline计算剔除各候选分类中的冗余服务,保留支配服务作为候选服务;最后,通过最大化效用函数来选取候选服务构成组合服务;仿真实验表明文中方法能高效地实现云计算环境下的服务选取,且与其它方法比较,与用户服务请求需求具有较高的匹配度,服务选择精确度达到100%,同时算法的时间复杂度较低,具有较大的优越性。 Aiming at the service selection method in cloud computing which has a lot of similar or same functions but different quality service environment has the defects of low efficiency and real--time performance, therefore, a service selection method based on clustering and skyline computing was proposed. Firstly, the fuzzy clustering method was used to classify the abstract service class, the class with the best match ability with the user service request was defined as the candidate class, then the skyline computing was used to get the dominated candidate service, finally, the compound service was obtained by maximizing the utility function. The experiment shows the method in this paper can realize service selection in cloud computing, and compared with the other methods, it has the larger matching ability with the user request constraint with the lower algorism complexity, and the service selection accuracy is as high as 100%. Therefore it is proved has big priority.
出处 《计算机测量与控制》 北大核心 2014年第1期236-238,241,共4页 Computer Measurement &Control
关键词 云计算 聚类 服务选择 服务质量 cloud computing clustering service selection service quality
  • 相关文献

参考文献11

  • 1Vaquero L, Rodero Marino L, Cacerce J, et al. A break in the clouds: towards a cloud definition [J] SIGCOMM Computer Corn munication Review, 2009, 39 (1) : 50 - 55.
  • 2Mauro Andreolini, Sara Casolari, Michele Colajanni. Dynamic load management of virtual machines in a cloud architecture[J]. Depart- ment of Information Engineering, 2010 201 - 204.
  • 3Armbrust M, Fox A, Griffith R, et al. Above the Clouds: a Berke ley View of Cloud Computing [R]. EECS Department, University of California, Berkeley, 2009.
  • 4许力,周进刚,张霞,谭国真.云应用资源交付与分裂聚类调度方法[J].计算机工程,2011,37(11):52-55. 被引量:5
  • 5Zhao L, Liu A, Keung J. Evaluating cloud platform architecture with the CARE framework [A]. Proceedings of APSEC[C] 2010: 60-69.
  • 6Liman N, Boutaba R. Assessing software service quality and trust worthiness at selection time [J]. IEEE Transactions on Software Engineering, 2010, 36 (4).. 559-574.
  • 7代钰,杨雷,张斌,高岩.支持组合服务选取的QoS模型及优化求解[J].计算机学报,2006,29(7):1167-1178. 被引量:91
  • 8Hu C H, Wu M, Liu G P. QoS scheduling algorithm based ON hybrid particle swalm optimization strategy for Web services workflow EA~. 6th International Conference Oil Grid and Cooperative Computing [C]. Piscataway: IEEE Computer Socies, 2007. 330 - 337.
  • 9欧伟杰,曾承,曾青,彭智勇,王珍珍,刘波,马景燕.QoS感知的高效抽象服务选择[J].小型微型计算机系统,2013,34(1):1-8. 被引量:6
  • 10王尚广,孙其博,张光卫,杨放春.基于云模型的不确定性QoS感知的Skyline服务选择[J].软件学报,2012,23(6):1397-1412. 被引量:67

二级参考文献34

共引文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部