期刊文献+

基于快速分裂Bregman迭代的全变差正则化SENSE磁共振图像重建 被引量:1

Total Variation Regularized SENSE MRI Reconstruction Based on Fast Split Bregman Iteration
下载PDF
导出
摘要 在并行磁共振成像中,由于敏感度编码(SENSE)重建过程的病态性,当加速因子增大时,其重建图像的信噪比将会明显降低.通过深入分析全变差(TV)正则化的SENSE重建模型,引入一种高效快速的分裂Bregman迭代算法来得到优化解,进而有效改善图像重建效果.分别对磁共振的体模数据和大脑数据进行仿真实验研究.结果表明,与传统TV正则化SENSE重建相比,此算法不但迭代次数少、收敛速度快,而且能够有效消除混叠伪影,提高图像信噪比并减小归一化均方误差. In parallel magnetic resonance imaging (MRI), the signal to noise ratio (SNR) of reconstruction image would be obviously reduced under the high acceleration factors because of the ill-posed problem in the process of sensitivity encoding (SENSE) reconstruction. Through in-depth analysis of total variation (TV) regularized SENSE reconstruction model, an efficient and fast split Bregman iteration algorithm was introduced to obtain the optimal solution and effectively improve the image reconstruction results. The simulation experiments were carded on the phantom data and brain data of MRI, respectively. The experimental results demonstrated that compared with the traditional TV regularized SENSE reconstruction algorithm, the proposed algorithm not only has fewer iterations and faster convergence speed, but also can alleviate the aliasing artifacts, significantly improves the SNR and decreases the normalized mean squared error of reconstruction image.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期24-28,共5页 Journal of Northeastern University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(N100404007)
关键词 敏感度编码(SENSE) 磁共振图像重建 全变差正则化 人工时间演化法 分裂Bregman迭代 sensitivity encoding (SENSE) magnetic resonance image reconstruction total variation regularization artificial time marching method split Bregman iteration
  • 相关文献

参考文献11

  • 1Pruessmann K P,Weiger M,Scheidegger M B. SENSE:sensitivity encoding for fast MRI[J].{H}Magnetic Resonance in Medicine,1992,(05):952-962.
  • 2吴春俐,胡文娟,阚如文,于健.一种改进的磁共振并行成像k空间数据采集算法[J].东北大学学报(自然科学版),2011,32(8):1101-1104. 被引量:2
  • 3Rudin L,Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena,1992,(01):259-268.
  • 4Rudin L,Osher S. Total varation based image restoration with free local constraints[A].Santa Monica,1994.31-35.
  • 5Vogel C R,Oman M E. Iterative methods for total varation denoising[J].{H}SIAM Journal ON SCIENTIFIC COMPUTING,1996,(01):227-238.
  • 6Chan T F,Golub G H,Mulet P. A nonlinear primal-dual method for total varation-based image restoration[J].{H}SIAM Journal of Scientific Computing,1999,(06):1964-1977.
  • 7Wang Y L,Yin W,Zhang Y. A fast algorithm for image deblurring with total variation regularzation[D].Houston:Rice University,2007.
  • 8Tao M,Yang J. Alternating direction algorithms for total variation de convolution in image reconstruction[D].Nanjing:Nanjing University,2009.
  • 9Goldstein T,Osher S. The split Bregman method for L1regularized problems[J].SlAM Journal on Imaging Sciences,2009,(02):323-343.
  • 10Setzer S,Stetdl G,Teuber T. Deblurring Poissonian images by split Bregman techniques[J].{H}JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,2010,(03):193-199.

二级参考文献9

  • 1Chen Z, Zhang J, Yang R, et al. 2D IIR filter for parallel magnetic resonance image reconstruction [ C ] // IEEE International Conference on Control and Automation.Christchurch, 2009 : 1792 - 1794.
  • 2Pruessmann K P, Weiger M, ScheidEgger M B, et al. SENSE: sensitivity encoding for fast MRI [ J ]. Magn Reson Med, 1999,42(5):952-962.
  • 3Sodickson D K, Manning W J. Simultaneous acquisition of spatial harmonics (SMASH) : fast imaging with radiofrequency coil arrays[J]. Magn Reson Med, 1997,38(4) :591-603.
  • 4Griswold M A, Jakob P M, Heidemarm R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magn Reson Med, 2002,47(6): 1202 - 1210.
  • 5Blaimer M, Breuer F, Mueller M, et al. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method[J]. Top Magn Reson Imaging, 2004,15 (4) : 223 - 236.
  • 6Iris M, Noebauer H, Christian G, et al. MR imaging of the cervical spine: assessment of image quality with parallel imaging compared to non-accelerated MR measurements [ J ]. Eur Radio, 2007,17(5) : 1147 - 1155.
  • 7t~ran C, I~eatty P J, Skate S, et al. Comparison of reconstruction accuracy and efficiency among autocalibrating data-driven parallel imaging methods[ J ]. Magn Reson Med, 2008,59(2) :382 - 395.
  • 8Wang Z, Wang J, Detre J. Improved data reconstruction method for GRAPPA[J ]. Magn Reson Med , 2005,54 (3) : 738 - 742.
  • 9杨萍,何砚发,王金星,于兵.基于β估计校正值的低场功能磁共振成像分析方法[J].东北大学学报(自然科学版),2010,31(2):165-167. 被引量:1

共引文献1

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部