摘要
为提高RBF神经网络遥感影像分类算法的分类效果,本文提出了一种基于核聚类的改进方法。文中采用武汉地区的SPOT影像为实验数据,比较了改进算法与传统基于K均值的RBF神经网络的分类结果,试验表明改进算法的总体精度和Kappa系数均高于传统算法。
The purpose of this article is to enhance the classification performance of RBF neural net- work on remote sensing images by applying an improved algorithm based on kernel clustering. An experi- merit was conducted on:the SPOT image of Wuhan. Comparison of the classification results between the imprdved algorithm with the traditional RBF neural network indicated that the improved method has a higher overall accuracy and Kappa coefficient than the traditional method.
出处
《测绘科学》
CSCD
北大核心
2014年第1期96-100,共5页
Science of Surveying and Mapping
基金
国家支撑项目(2012BAH34B02
2012BAJ15B04
2011BAH12B03)
关键词
遥感影像分类
RBF神经网络
核聚类
OTSU算法
影像分割
remote sensing image classification
RBF neural network
kernel clustering
OTSU algo- rithm
image segmentation