期刊文献+

长等待时间下铜互连线形成球状缺陷的机理研究及解决方案 被引量:1

Formation Mechanism and Solution for Hillock in Cu Interconnection Due to Long Q-Time
下载PDF
导出
摘要 随着集成电路向高密度小尺寸方向发展,铜互连已成为目前集成电路主要使用的互连技术,但球状缺陷的形成会影响产品的质量.本文研究了长等待时间下铜互连线中球状缺陷的形成机理,分析了其造成器件失效的原因,并提出了相应的解决方案.研究显示,前道工序应力残留致铜晶界处应变再结晶是这种形式球状缺陷形成的主要原因.球状缺陷会使两层金属之间形成额外通孔,从而引起短路或漏电,导致器件失效.最后提出了相应的解决方案,通过正交实验发现铜电镀退火温度降低50℃,氮化硅淀积速率降低1 nm/s,氮化硅的膜厚提高10 nm能够有效改善这一现象. With integrated circuit (IC) becoming higher in density and smaller in size, Cu interconnec tion has developed into a dominant interconnection technology. However, the formation of hillock would affect the product quality. The formation mechanism of hillock due to long queue time (Qtime) was ana lyzed in this paper to explore the device failure mode and a corresponding solution was put forward . The results show that the main hillockformation factor is the stress residual on grain boundaries of copper at oms from previous procedure. Hillock brought about excessive via bridge between metal layers 4 and 5, which would induce current leakage or short circuit, thus leading to device failure. The orthogonal test showed that the yield of product was improved significantly when electro chemical plating (ECP) annea ling temperature decreased by 50 ℃, silicon nitride (SiN) deposition rate decreased by 1 nm/s and SiN film thickness increased by 10 nm.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第1期51-55,共5页 Nanotechnology and Precision Engineering
关键词 铜互连 等待时间 球状缺陷 器件失效 正交实验 Gu interconnection Q-time hillock device failure orthogonal test
  • 相关文献

参考文献6

二级参考文献28

  • 1JACKSON R L, BROADBENT E, CACOURIS T, et al. Processing and integration of copper interconnects [J]. SST, 1998,41 (3) :49-53.
  • 2EDELSTEIN D, UZOH C, CABRAL C, et al. A high performance liner for copper damascene interconnects [C].Proc of the IEEE Interconnect Tech Conf. Burlingame, CA, USA ,2001:9-11.
  • 3LANE M W, MURRAY C E, MCFEELY F R, et al. Liner materials for direct alectrodeposition of Cu [J]. APL,2003,83 (12) : 2330-2332.
  • 4YOUNG S K, HYUNG I K, DAR M A, et al. Electrochemically deposited ruthenium seed layer followed by Cu electrochemical plating [J]. Elecvrochemical and Solid State Lett, 2006,9 ( 1 ) : c19-c23.
  • 5JOSELL D, BONEVICH J E, MOFFAT T P, et al. Osmium barriers for direct copper electrodeposition in damascene processing [J]. Electrochemical and Solid State Lett,2006,9 (2) :c41-c43.
  • 6JOSELL D, BONEVICH J E, MOFFAT T P, et al. Iridium barriers for direct copper electrodeposition in damascene processing [J]. Electrochemical and Solid State Lett, 2006, 9 (2) :c48-c50.
  • 7KIM H, KOSEKI T, OHBA T, et al. Cu wettability and diffusion barrier property of Bu thin film for Cu metallization [J]. J Electrochem Soc, 2005,152(8) : G594-G600.
  • 8MORAND Y. Copper metallization for advanced IC: requirements and technological solutions [J]. Microelectronic Engineering, 2000,50(1-4) : 391-401.
  • 9MOFFAT T P. WHEELER D, EDELTEIN M D, et al.Superconformal film growth:mechanism and quantification [J]. IBM J Res&Dev,2005,49( 1 ) : 19-36.
  • 10MOFFAT T p,WHEELER D,KIM S K,et al.Curvature enhanced adsorbate coverage model for electrodeposition [J]. J Electrochem Soc, 2006,153 (2) : c127-c132.

共引文献46

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部