期刊文献+

PDMS微/毫流控芯片的简易快速制备及其疏水性研究 被引量:2

Convenient and Rapid Fabrication of and Hydrophobicity Study on PDMS Microfluidic/Millifluidic Chip
下载PDF
导出
摘要 将玻璃片/管、锡箔等材料进行组装、通道搭建制备出带有管路图案的容器,再将聚二甲基硅氧烷(PDMS)预聚体浇注到该容器中固化成型,之后通过模具拆卸、切割制备出整体式PDMS微/毫流控芯片.该法可获取各种微通道尺寸保真性好的整体式芯片,其通道截面圆形度与由热压法制备的微流控芯片相比有明显提高.另将获得的PDMS芯片经过30 min紫外改性后,其疏水性得到明显改善,与H2O的接触角由钝角变为了锐角,并在室温下静置能维持1 h左右的改性,完全能够满足液滴成型实验的时间要求.另外将该法制备的PDMS整体式芯片用于单分散液滴、双重液滴制备时,可在较宽的流速范围(4 mL/h^36 mL/h)内得到粒径可控的液滴,并且液滴在芯片通道中不易破乳,表现出良好的稳定性.这对于靶球制备、功能材料合成、活性成分保持等应用有重要意义. A microfluidic/millifluidic chip can be fabricated conveniently and rapidly by pouring polydimethylsiloxane (PDMS) into a removable model, which is assembled by such materials as glass sheet/tube, aluminum foil and so on. By disassembling the model and cutting needless PDMS, intact chips with high fidelity for various micro channel sizes can be prepared easily. Through an optical micro- scope, we find the roundness of this channel's cross profile is much better than the chip fabricated by hot pressing. After 30 rain UV modification, the PDMS chip with higher hydrophobic properties can be achieved. The contact angle with H20 is switched into an acute angle from an obtuse one. The switch in angle can last one hour or so at room temperature, which can entirely meet the requirement of the droplet experiment. In addition, the chip fabricated in this way can be used for tunable monodisperse droplet or double droplet formation in a wide flow rate (4 mlMh--36 mlMh). In the channel, the droplet is hardly broken, indicating that the chip can provide a stable environment. It is of great significance for target ball fabricating, functional material synthesizing, and active component maintaining.
出处 《纳米技术与精密工程》 CAS CSCD 2014年第1期63-67,共5页 Nanotechnology and Precision Engineering
基金 中国工程物理研究院科学技术发展基金资助项目(2012A0302015 2012B0302050 2010B0302047)
关键词 聚二甲基硅氧烷 毫流控芯片 整体式芯片 可拆卸模具 液滴 Keywords : polydimethylsilexane (PDMS) microfluidic/millifluidic chip intact chip removable mod-els droplet
  • 相关文献

参考文献10

  • 1Kim Y T,Messner W C,Leduc P R. Disruptive microfluidics:From life sciences to world health to energy[J].Disruptive Science and Technology,2012,(01):41-53.
  • 2Serra C A,Chang Z. Microfluidic-assisted synthesis of polymer particles[J].{H}Chemical Engineering & Technology,2008,(08):1099-1115.
  • 3Dendukuri D,Doyle P S. The synthesis and assembly of polymeric microparticles using microfluidic[J].{H}Advanced Materials,2009,(41):4071-4086.
  • 4Chabinyc M L,Chiu D T,McDonald J C. An integrated fluorescence detection system in poly (dimethylsiloxane) for microfluidic applications[J].{H}Analytical Chemistry,2001,(18):4491-4498.
  • 5崔轶,范勇恒,罗炫,刘磊,常冠军,张林,林润雄.二乙烯基苯泡沫空心球微流体成型技术[J].强激光与粒子束,2010,22(9):2082-2086. 被引量:2
  • 6Chang G J,Miao L B,Xu Z. Preparation of hollow poly(imino ether ketone) microspheres by microliquid technique[J].{H}Journal of Applied Polymer Science,2012,(05):4061-4069.
  • 7罗炫,张林,杜凯,方瑜,袁光辉.低密度对二乙烯基苯泡沫的优化制备[J].强激光与粒子束,2010,22(1):63-67. 被引量:2
  • 8高存梅,罗炫,方瑜,张庆军,杜凯,唐永建.微流控制备单分散微米级SiO_2微球[J].强激光与粒子束,2012,24(6):1401-1405. 被引量:6
  • 9Xu J H,Li S W,Tan J. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device[J].{H}LANGMUIR,2006,(19):7943-7946.doi:10.1021/la0605743.
  • 10Lan W J,Li S W,Xu J H. Synthesis of titania-silica core-shell microspheres via a controlled interface reaction in a microfluidic device[J].{H}LANGMUIR,2011,(21):13242-13247.

二级参考文献33

  • 1骆锋,阮建明,万千.微乳液法制备纳米二氧化硅粉末工艺的研究[J].硅酸盐通报,2004,23(5):48-52. 被引量:18
  • 2韩喻,谢凯.三维光子晶体及其制备技术研究进展[J].材料导报,2007,21(5):4-9. 被引量:4
  • 3Young A T, Moreno D K, Marsters R G. Preparation of muhishell ICF target plastic foam cushion materials by thermally induced phase inversion processes[J]. J Vac Sci Technol, 1982, 20(4) : 1094-1097.
  • 4Steckle W P, Nobile A. Low density material for use in inertial fusion targets[J].Fusion Science and Technology, 2003, 43(3):301-306.
  • 5Barby D, Haq Z. Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids: European, 0060138[P]. 1985-06-11.
  • 6Williams J M, Gray A J, Wilkerson M H. Emulsion stability and rigid foams from styrene or divinylbenzene water-in-oil emulsions[J].Langmuir, 1990, 6:437-444.
  • 7Williams J M, Wroblerb D A. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from crosslinked polystyrene[J].Langrnuir, 1988, 4(3) :656-662.
  • 8Williams J M, Wroblerb D A. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from crosslinked polystyrene[J].Langrnuir, 1988, 4(3) :656-662.
  • 9Lissant K J. Emulsions and emulsion technology: Part 1[M]. New York: Marcel Dekker, 1974.
  • 10Paguio R R, Frederick C A, Hund J F, et al. Fabrication capabilities for spherical foam targets used in ICF experiments[R]. Knoxville, TN. GA-A25288, 2005.

共引文献7

同被引文献27

  • 1张雅雅,崔建国.基于数字光刻投影系统的快速微加工技术[J].应用光学,2015,36(3):448-453. 被引量:8
  • 2Shevkoplyas S S, Yoshida T, Munn L L, et al. Biomimetic autoseparation of leukocytes from whole blood in a mic.roflu- idic device[J]. Anal Chem, 2005, 77(3) : 933-937.
  • 3Carugo D, Capretto L, Nehru E, et al. A microfluidic-based arteriolar network model for biophysical and bioanalytical in- vestigations[J]. Currt Anal Chem, 2013, 9( 1 ) : 47-59.
  • 4Rosano J M, Tousi N, Scott R C, et al. A physiologically realistic in vitro model of microvascular networks [ J ]. Bi- omed Microdevices, 2009, 11( 5 ) : 1051-1057.
  • 5Carugo D, Captto L, Willis S, et al. A microfluidic device far the charaeterisation of embolisation with polyvinyl alcohol beads through biomimetic bifurcations [ J ]. Biomed Microde- vices, 2012, 14( 1 ) :153-163.
  • 6Leclerc E, Sakai Y, Fujii T. Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane) [ J ]. Biomed Microdevices, 2003, 5(2) : 109-114.
  • 7Shao J Y, Hoehmuth R M. The resistance to flaw of individ- ual human neutrophils in glass capillary tubes with diameters between 4. 65 and 7. 75 /μm [ J ]. Microcirculation, 1997, 4 (1): 61-74.
  • 8Borenstein J T, Tupper M M, Mack P J, et al. Functional endothelialized microvascular networks with circular cross- sections in a tissue culture substrate[ J]. Biomed Microdevic- es, 2010, 12(1): 71-79.
  • 9Wang G J, Ho K H, Hsu S, et al. Microvessel scaffold with circular microchannels by photoresist melting [ J ]. Biomed Microdevices, 2007, 9 (5) : 657-663.
  • 10Fiddes L K, Raz N, Srigunapalan S, et al. A circular cross- section PDMS microfluidics system for replication of cardio- vascular flow conditions[ J]. Biomaterials, 2010, 31 ( 13 ) : 3459-3464.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部