期刊文献+

基于PCE方法的翼型不确定性分析及稳健设计 被引量:22

UNCERTAINTY QUANTIFICATION AND ROBUST DESIGN OF AIRFOIL BASED ON POLYNOMIAL CHAOS TECHNIQUE
下载PDF
导出
摘要 由于能够获得一个既经济又对参数变化不敏感的设计结果,稳健型设计在工程设计中备受关注.不确定性分析是稳健型设计的关键.因此研究了基于混沌多项式的不确定性分析方法,并将其与CFD方法结合,对计算空气动力学设计中的不确定性影响进行了量化分析.首先以RAE2822翼型为算例,对其跨音速马赫数不确定影响进行了分析,研究了多项式阶次对计算的影响,分析了平均流场和方差.接着结合超临界翼型的马赫数稳健型设计验证了混沌多项式方法在稳健型设计中的有效性.优化结果表明,稳健型优化后的翼型阻力系数明显降低,同时对于马赫数的敏感性显著减小.通过分析表明混沌多项式方法能够大幅提高稳健型优化设计效率,能很好地应用于气动稳定性设计. Robust design optimization has gained increasing concern in the engineering design process because it can provide an economical design that is insensitive to variations in the input variables without eliminating their causes. The key of robust design is uncertainty analysis. So in this paper the uncertainty analysis based on polynomial chaos was investigated and combined with CFD method to quantify the uncertainties in computational aerodynamic design. The transonic flow around RAE2822 airfoil is studied to test the presented method and analyze the effect of the polynomial or- der to the precision of the aerodynamic characteristic. The robust clesign of a supercritical airfoil based on the uncertainty of Mach number was conducted to validate the PCE method. It is shown by the optimization result that the drag coefficient was decreased at the design point while the sensitivity of the drag coefficient about the Mach number was weakened. It is proved that the PCE method can improve the efficiency of robust design and is a good choice for aerodynamic robust design.
出处 《力学学报》 EI CSCD 北大核心 2014年第1期10-19,共10页 Chinese Journal of Theoretical and Applied Mechanics
关键词 稳健型设计 NSGA-Ⅱ 混沌多项式 埃尔米特多项式 不确定性分析 robust design, NSGAII, polynomial chaos, Hermite polynomials, uncertainty quantification
  • 相关文献

参考文献22

  • 1Li W, Huyse L, Padula S. Robust airfoil optimization to achieve consistent drag reduction over a Mach range. ICASE Report No. 2001-22 , 2001.
  • 2Zhong XP,Ding JF, Li WJ, et al. Robust airfoil optimization with multi-objective estimationof distribution algorithm. Chinese Journal of Aeronautics, 2008, 21(4): 289-295.
  • 3Anile AM, Spinella S, Rinaudo S. Stochastic response surface method and tolerance analysis in microelectronics, COMPEL. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2003, 22(2): 314-327.
  • 4Tatang MA, Pan W, Prinn RG, et al. An efficient method for parametric uncertainty analysis of numerical geophysical models. Journal of Geophysical Research, 1997, 102(D18): 21925-21932.
  • 5Wiener N. The homogeneous chaos. American Journal of Mathematics, 1938, 60: 897-936.
  • 6Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. New York: Springer-Verlag, 1991.
  • 7Ghanem RG. Ingredients for a general purpose stochastic finite element formulation. Computational Methods in Applied Mechanical Engineering, 1999, 168: 19-34.
  • 8Mathelin L,Hussaini MY,Zang TZ,et al.Uncertainty propagation for turbulent,compressible nozzle flow using stochastic methods.AIAA Journal,2004,42(8):1669-1676.
  • 9Xiu D,Karniadakis GE.Modeling uncertainty in flow simulations via generalized polynomial chaos.Journal of Computational Physics,2003,187(1):137-167.
  • 10Debusschere BJ,Najm HN,Pebay PP,et al.Numerical challenges in the use of polynomial chaos representations for stochastic processes.SIAM Journal on Scientific Computing,2004,26(2):698-719.

二级参考文献29

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:21
  • 2康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 3丁继锋,李为吉,张勇,唐伟.基于响应面的翼型稳健设计研究[J].空气动力学学报,2007,25(1):19-22. 被引量:21
  • 4AIAA. Guide for verification and validation of computational fluid dynamics simulation. AIAA, G-077, 1998.
  • 5EU Project (sixth framework). Non-deterministic simulation for CFD-based design methodologies (NODESIM-CFD). 2006, http://www.nodesim.eu/.
  • 6Zang T A, Hemsch M J, Hilburger M W, et al. Needs and opportunities for uncertainty based multidisciplinary design methods for aerospace vehicles. Hampton, Va: NASA Langley Res Cent, 2002, 1:53.
  • 7Wiener N. The homogeneous chaos. Am J Math, 1938, 60:897-936.
  • 8Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach. Revised Edition. USA: Dover Publications, 2003.
  • 9Le Maitre O P, Knio O, Habib N N, et al. A stochastic projection method for fluid flow I. Basic formulation. J Comput Phys, 2001, 173: 481-511.
  • 10Xiu D, Karniadakis G E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24: 619- 644.

共引文献37

同被引文献252

引证文献22

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部