期刊文献+

非均布随机参数结构非线性响应的概率密度演化 被引量:9

PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS
下载PDF
导出
摘要 首先考察了概率密度演化理论中的点演化和群演化与概率空间剖分的关系.继而,讨论了点集筛选的基本准则.在此基础上推广了点集偏差的概念,对非均匀、非正态的一般多维分布,提出了广义F偏差(GF偏差)的概念,避免了偏差计算的NP难解问题.探索了GF偏差与EF偏差的关系.以GF偏差最小化为准则,建议了概率空间最优剖分与点集重整的新策略.结果表明,上述方法能够处理包含多达数10个随机变量的结构动力响应概率密度演化分析问题.最后,指出了需要进一步研究的问题. The probability density evolution method (PDEM) provides a feasible approach for nonlinear stochastic re- sponse analysis of multi-degree-of-freedom systems. In the present paper, the point evolution, ensemble evolution and the partition of probability-assigned space are firstly revisited. The criterion for point selection is then explored. The concept of generalized F-discrepancy (GF-discrepancy), which avoids the NP-hard problem of computation, is introduced for random variables of general non-uniform, non-Gaussian distribution as an index to measure the quality of a point set. The relationship between GF-discrepancy and EF-discrepancy is explored and the error bound is studied by the extended Koksma-Hlawka inequality. Based on the GF-discrepancy, a new strategy for point-selecting and space-partitioning is proposed. The numerical example shows that the proposed method enables highly accurate probability density evolution analysis of nonlinear structures involving dozens of non-uniform random variables. Problems to be further studied are discussed.
出处 《力学学报》 EI CSCD 北大核心 2014年第1期136-144,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(11172210) 上海市曙光计划(11SG21)资助项目~~
关键词 非线性结构 随机响应 概率密度演化理论 GF偏差 Koksma—Hlawka不等式 nonlinear structures, stochastic response, probability density evolution method (PDEM), GF-discrepancy,Koksma-Hlawka inequality
  • 相关文献

参考文献26

  • 1Wen YK. Reliability and performance-based design[J].{H}Structural Safety,2001,(04):407-428.
  • 2Wen YK. Probabilistic aspects of earthquake engineering[A].{H}Boca Raton,FL:CRC Press,2004.
  • 3Lutes LD,Sarkani S. Random Vibrations:Analysis of Structural and Mechanical Systems[M].{H}Amsterdam:Elsevier,2004.
  • 4朱位秋.随机振动[M]{H}北京:科学出版社,1992.
  • 5徐伟.非线性随机动力学的若干数值方法及应用[M]{H}北京:科学出版社,2013.
  • 6李杰.随机结构系统——分析与建模[M]{H}北京:科学出版社,1996.
  • 7Schu(e)ller GI. A state-of-the-art report on computational stochastic mechanics[J].{H}PROBABILISTIC ENGINEERING MECHANICS,1997,(04):197-321.
  • 8程长明,彭志科,孟光.一类非线性系统的随机振动频率响应分析研究[J].力学学报,2011,43(5):905-913. 被引量:5
  • 9Li J,Chen JB. Stochastic Dynamics of Structures[M].{H}John Wiley & Sons,Inc,2009.
  • 10李杰,陈建兵.随机动力系统中的概率密度演化方程及其研究进展[J].力学进展,2010,40(2):170-188. 被引量:68

二级参考文献99

共引文献71

同被引文献105

引证文献9

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部