期刊文献+

开始冷却温度对X80管线钢组织与性能的影响 被引量:3

Effects of start cooling temperature on microstructure and properties of X80 pipeline steel
原文传递
导出
摘要 通过组织观察与力学性能测试,分析了X80管线用钢板轧后开始冷却温度(SCT)对其组织与性能的影响。研究结果表明,当开始冷却温度在680—785℃温度范围内时,不改变钢板的合金成分,钢板的强度指标不低于X70管线钢的要求,并具有良好的低温冲击性能,-20℃冲击吸收能量最低值不小于280J。开始冷却温度对钢板的显微组织有明显的影响,当开始冷却温度为785℃与750℃时,显微组织以贝氏体为主;当开始冷却温度为715℃与680℃时,显微组织为铁素体、贝氏体复合组织为主。组织中含有一定体积分数的铁素体,可以改善钢板的塑性,但会在一定程度上降低强度与冲击性能。 The effects of start cooling temperature(SCT) on microstructure and properties of the pipeline steel X80 were analyzed by means of microstructure observation and mechanical property test. When the SCT is in the range of 680-785 ℃, the strength of the tested pipeline steel can satisfy the requirement of X70 grade steel at least. The pipeline steel plates also show good toughness with impact energy higher than 280 J at -20 ℃. Microstructure observation shows that the SCTs have obvious effect on microstructure of the tested pipeline steel plates. When the SCTs are 785 ℃ and 750 ℃, the microstructure is bainite predominantly. When the SCTs are 715 ℃ and 680 ℃, the microstructure is ferrite and bainite. When the steel contained a certain amount of ferfite, the ductility of plate is improved, but strength and impact property will decrease to a certain extent.
出处 《金属热处理》 CAS CSCD 北大核心 2014年第1期11-15,共5页 Heat Treatment of Metals
基金 国家高技术研究发展计划(2013AA09A219)
关键词 管线钢 开始冷却温度 组织 性能 pipeline steel start cooling temperature (SCT) microstructure property
  • 相关文献

参考文献9

二级参考文献72

共引文献90

同被引文献38

  • 1王海燕,毛卫民,谭啸,谭会杰,任慧平.不同终冷温度下管线钢热轧板的组织与织构演变[J].金属热处理,2015,40(1):27-30. 被引量:10
  • 2William M, Robin G, Robert S. Strain-based design guidelines for pipeline girth welds [ C ]//Proceedings of the Fourteenth International Offshore and Polar Engineering Conference, Toulon : ISOPE, 2004 : 10- 17.
  • 3Ishikawa N, Okatsu M, Kondo J, et al. Design concept and production of high deformability linepipe [ C ]//Proceedings of the 6th International Pipeline Conference, Calgary : ASME, 2006 : 1-8.
  • 4Ishikawa N, Okatsu M, Kondo J, et al. Material development and strain capacity of grade X100 high strain linepipe [ C ]//Proceedings of the 8th International Pipeline Conference, Calgary: ASME, 2008: 1-8.
  • 5Okatsu M, Shinmiya T, Ishikawa N, et al. Development of high strength linepipe with excellent deformability [ C ]//Proceedings of the 24th International Conference on Offshore Mechanics and Arctic Engineering, Halkidiki: ASME, 2005 : 63-70.
  • 6Ji Lingkang, Chen Hongyuan, Gao Huilin, et al. Key issues in the specification of high strain line pipe used in strain-based designed districts of the 2nd west to east pipeline[ C ]//Proceedings of the 8th International Pipeline Conference, Calgary: ASME, 2008 : 695-703.
  • 7Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [ J ]. Acta Materialia, 2003, 51: 2611-2622.
  • 8Edmonds D V, He K, Miller M K, et al. Microstructural features of ' quenching and partitioning' : a new martensitic steel heat treatment [ J]. Material Science and Forum, 2007, 539: 4819-4528.
  • 9Li H Y, Lu X W, Li W J, et al. Microstructure and mechanical properties of an ultrahigh-strength 40SiMnNiCr steel during the one- step quenching and partitioning process [ J]. Metallugical and Materials Transactions A, 2010, 41 : 1284-1300.
  • 10Toyohisa S, Nobuyuki I, Mitsuhiro O, et al. Development of high deformability linepipe with resistance to strain-aged hardening by heat treatment on-line process [ C ]//Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, Lisbon: ISOPE, 2007 : 2963-2968.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部