期刊文献+

利用重复频率纳秒脉冲和线电极产生常温常压下的大气压弥散放电 被引量:1

A Method for Generating Diffuse Discharge via Repetitive Nanosecond Pulses and Wire Electrodes in Room-temperature Atmospheric Air
下载PDF
导出
摘要 大气压弥散放电产生非热平衡等离子体在诸多高新技术领域具有较大应用潜力。分析了在常温常压的大气压条件下,形成和维持非热平衡等离子体的机制,提出了实现弥散放电应设法满足低放电电压、多电子崩发展和带电粒子温度抑制的条件。由此设计了在开放的大气压空气环境中实现大面积弥散放电的装置。根据逃逸电子击穿理论,选择重复频率、较低占空比的纳秒脉冲电激励方式作为弥散放电的低电压驱动源。利用线型电极的小曲率半径,构成极不均匀电场间隙。弥散放电分别在直线型电极和圆环型电极中进行。实验结果表明,所研制的放电装置能够以百kV以内峰值纳秒脉冲电压、数百Hz的频率激励若干厘米等级间距的大气压弥散放电。 The non-equilibrium plasmas produced by diffuse discharges have a great potential of application in many high technology fields. In room-temperature atmospheric air, the formation mechanism of non-equilibrium plasma is discussed and analysed. It is concluded that generating diffuse discharge in open air should meet the three conditions: low-voltage excitation, plentiful electron avalanches and temperature inhibition of spatial charge particles. A method of generating diffuse discharge is proposed and implemented. Based on runaway electrons breakdown theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform electrical field are structured. The experiments are performed in linear-type and ring-type electrode pairs. The results prove that the proposed method can generate typical diffuse discharges in cm. gaps via nanosecond pluses with less than 100kV peak voltage, hundreds of Hz repetitive frequency.
出处 《中国电机工程学报》 EI CSCD 北大核心 2014年第3期460-467,共8页 Proceedings of the CSEE
关键词 弥散放电 非平衡等离子体 纳秒脉冲 特斯拉变 压器 占空比 diffuse discharge non-equilibrium plasma nanosecond pulse Tesla transformer duty ratio
  • 相关文献

参考文献29

  • 1卢新培,严萍,任春生,邵涛.大气压脉冲放电等离子体的研究现状与展望[J].中国科学:物理学、力学、天文学,2011,41(7):801-815. 被引量:75
  • 2Kim G C,Kim G J,Park S R. Air plasma coupled with antibody-conjugated nanoparticles:A new weapon against cancer[J].J Phys D-Appl Phys,2009,(03):032005.
  • 3胡辉,李劲,何俊佳,白明.用脉冲放电产生救治呼吸衰竭用一氧化氮的研究[J].中国电机工程学报,2005,25(2):98-102. 被引量:10
  • 4Repev A G,Repin P B,Danchenko E G. Structure of the glow of a nanosecond diffuse discharge in a strongly nonuniform electric field[J].{H}Technical Physics,2008,(07):858-865.
  • 5Shao Tao,Zhang C,Niu Z. Diffuse discharge,runaway electron,and x-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J].{H}Applied Physics Letters,2011,(02):021503.
  • 6Shao Tao,Tarasenko V F,Zhang C. Diffuse discharge produced by repetitive nanosecond pulses in open air,nitrogen,and helium[J].{H}Journal of Applied Physics,2013,(09):093301.
  • 7章程,邵涛,许家雨,马浩,严萍.大气压空气中纳秒脉冲弥散放电实验研究[J].高电压技术,2012,38(5):1090-1098. 被引量:12
  • 8Kogelschatz U. Dielectric-barrier discharges:their history,discharge physics,and industrial applications[J].{H}Plasma Chemistry and Plasma Processing,2003,(01):1-46.
  • 9Massines F,Gherardi N,Fornelli A. Atmospheric pressure plasma deposition of thin films by Townsend dielectric barrier discharge[J].{H}Surface and Coatings Technology,2005,(05):1855-1861.
  • 10吴云飞,叶齐政,陈田,谭丹.介质阻挡放电灰度直方图的高斯混合概率模型研究[J].中国电机工程学报,2013,33(1):179-187. 被引量:7

二级参考文献234

共引文献244

同被引文献19

  • 1严璋,朱德恒.高电压绝缘技术[M].北京:中国电力出版社,2007.
  • 2Stark R, Schoenbach K. Electron heating in atmospheric pressure glow discharges[J]. Journal of Applied Physics, 2001, 89: 3568-3572.
  • 3Walsh J, Kong M. Room-termperature atmospheric argon plasma jet sustained with submicrosecond high-voltage pulses[J]. Applied PhysicsLetter, 2007, 91: 221502.
  • 4RepevA G, Repin P B, Danchenko E G. Structure of the glow of a nanosecond diffuse discharge in a strongly nonuniform electric field[J]. Technical Physics, 2008, 53(7): 858-865.
  • 5Tardiveau P, MoreauN, Bentaleb S, et.al, Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage [J]. Journal ofAppliedPhysics, 2009, 42(17): 175202.
  • 6Tarasenko V F, Baksht E K, Burachenko A G, et al. High- pressure runaway-electron-preionized diffuse discharges in a nonuniform electric field[J]. Technical Physics, 2010, 55(2): 210-218.
  • 7Baksht E H, Burachenko A G, Kostyrya I D, et.al. Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application[J]. Journal of Applied Physics, 2009, 42(18): 185201.
  • 8Pai D Z, Lacoste A, Laux C O. Images of nanosecond repetitively pulsed plasmas in preheated air at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 974-975.
  • 9Pal D Z, Lacoste A, Lanx C O. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharge in air at atmospheric air[J]. Journal of Applied Physics, 2010, 107(9): 093303.
  • 10Yang D, Wang W, Jia L, et al. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air[J]. Journal of Applied Physics, 2011, 109(7): 073308.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部