期刊文献+

曲波域瞬时衰减能量属性在储层识别中的应用研究 被引量:6

The application of instantaneous attenuation energy attribute in curvelet domain for reservoir identification
下载PDF
导出
摘要 地震波在含油气储层中传播时,主频降低,振幅出现明显的衰减异常,为油气检测提供了有效信息。利用曲波变换的多尺度特性,提出了曲波域衰减能量属性识别储层的方法,首先利用曲波变换对地震数据进行分频处理,然后在曲波域应用扩展的2DTeager-Kaiser能量算子(TEO),得到突出地震信号急剧变化的多尺度数据子体,实现对气、水层的区分。实际地震资料的应用效果表明,曲波域衰减能量属性能够有效地识别含不同流体储层的强振幅异常,与基于常规时频分析技术计算的衰减能量属性相比,可以更为准确地预测含气储层。 When seismic wave propagates in the oil-gas-bearing reservoirs,the dominant frequency is reduced and amplitude appears obvious attenuation anomaly.These attenuation characteristics provide effective information for the hydrocarbon detection.Accordingly,by applying the multi-scale characteristics of curvelet transform,the reservoir identification method with attenuation energy attribute in curvelet domain is proposed.Firstly,curvelet transform is utilized to frequency division processing.Then,the extended two-dimensional Teager-Kaiser energy operator is applied in the curvelet domain.Finally,the multi-scale subdatasets that highlight sharp change of seismic signal is obtained,and the identification of gas and water layers is realized.Application results of actual seismic data show that attenuation energy attributes in curvelet domain can effectively identify strong amplitude anomalies of reservoirs containing different fluid.Comparing with energy attenuation attributes calculated by conventional time-frequency analysis technique,the method is more accurate in predicting the gas-bearing reservoir.
出处 《石油物探》 EI CSCD 北大核心 2014年第1期54-60,共7页 Geophysical Prospecting For Petroleum
基金 国家科技重大专项(2008ZX05014-001-010HZ) 中国石油化工股份有限公司项目(P12047)共同资助
关键词 曲波变换 瞬时衰减属性 2DTeager-Kaiser算子 强振幅异常 储层预测 curvelet transform instantaneous attenuation energy attribute 2D Teager-Kraise operator strong amplitude anomaly reservoir prediction
  • 相关文献

参考文献20

  • 1王小杰,印兴耀,吴国忱.基于S变换的吸收衰减技术在含气储层预测中的应用研究[J].石油物探,2012,51(1):37-42. 被引量:24
  • 2魏文,王兴谋,李红梅,王树刚,王红.基于地震波衰减的特征属性重构方法[J].石油物探,2012,51(3):219-224. 被引量:7
  • 3Candès E J,Donoho D L. Curvelet a surprisingly effective nonadaptive representation for objects with edges[M].TN:Van-derbilt University Press,1999.1-30.
  • 4Candès E J. Ridgelets:theory and applications[D].USA:Department of Statistics,Stanford University,1998.
  • 5Candès E J,Donoho D L. Ridgelets:a key to higherdimensional intermittency[J].{H}Philosophical Transactions of the Royal Society of London Series A:Mathematical and Physical Sciences,1999.2495-2509.
  • 6Do M N,Vetterli M. The finite ridgelet transform for image representation[J].{H}IEEE Transactions on Image Processing,2003,(1):16-28.
  • 7Donoho D L. Fast ridgelet transforms in dimension 2[R].California:Department of Statistics,Stanford University,1997.
  • 8Candès E J,Donoho D L. New tight frames of curvelets and optimal representations of objects with piecewise-C2 singularities[J].{H}Communications on Pure and Applied Mathematics,2004,(2):219-266.
  • 9Candès E J,Demanet L,Donoho D L. Fast discrete curvelet transforms[J].Applied and Computational Mathematics,2005.1-43.
  • 10张广智,郑静静,印兴耀.基于Curvelet变换的多尺度性识别裂缝发育带[J].石油地球物理勘探,2011,46(5):757-762. 被引量:12

二级参考文献151

共引文献137

同被引文献55

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部