期刊文献+

数据挖掘技术在教育学中的应用

Application of Data Mining T echnology in Education
下载PDF
导出
摘要 随着信息化时代的不断发展,数据挖掘技术日趋成熟,满足了人们对于大量信息的处理要求。目前,数据挖掘技术已经越来越多的应用于金融、通讯和交通等各行各业,但是在教育领域的应用相对较少。针对这一现状,在传统的分析方法上采用了关联规则挖掘,聚类挖掘等多种算法,对青少年同伴关系、人际关系和网络成瘾等各方面进行研究,得到不同性别的青少年同伴亲疏程度不同等一系列结论,提出了数据挖掘技术在教育学领域的应用的新前景。 With the continuous development of information age, the data nfining technology is becoming mature, and meets the requirements of people for processing a large amount of information. At present, the data mining technology is widely used in finance, communications, transportation and other industries, but rarely used in education. Aiming at this situation, the various algorithms such as association rule mining and clustering mining are applied based on traditional analysis methods to study various aspects such as peer relationship, interpersonal relationship and Internet addiction. A series of conclusions are obtained that the degree of peer intimacy between different sexual teenagers is different. The new application prospect of data mining technology in education is proposed~
作者 张晔 柏毅
出处 《计算机与网络》 2013年第23期69-71,共3页 Computer & Network
关键词 数据挖掘 教育学 关联规则 APRIORI 数据库 data mining education association rule Apriori database
  • 相关文献

参考文献8

  • 1朱明.数据挖掘[M]{H}合肥:中国科学技术大学出版社,2002.
  • 2王小平,余亮.基于数据挖掘的网络教育资源库构建[J].西南师范大学学报(自然科学版),2005,30(1):163-167. 被引量:15
  • 3AGRAWAL R,IMIIELINSKI T,SWAMI A. Mimng Association Rules between Sets of Items in Large Databases[A].1993.207-216.
  • 4王洪立,吴继娟.基于SQL Server 2000下数据挖掘算法的研究[J].计算机工程与设计,2008,29(3):759-761. 被引量:4
  • 5贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 6柏毅;刘丽丽.数据挖掘技术在青少年同伴关系中的应用研究[D]南京:东南大学学习科学研究中心,2011.
  • 7陈京民.数据仓库与数据挖掘技术[M]{H}北京:电子工业出版社,2002.
  • 8柏毅;高宇.基于数据挖掘技术的网络成瘾与注意偏向关系的研究及数据库的设计[D]南京:东南大学学习科学研究中心,2009.

二级参考文献36

  • 1方盈.SQL Server 2000彻底研究[M].北京:中国铁道出版社,2001·01..
  • 2Guha S,Rastogi R,Shim K.CURE:An Efficient Clustering Algorithm for Large Databases[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.73-84.
  • 3Guha S,Rastogi R,Shim K.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C].Sydney:Proceedings of the 15th ICDE,1999.512-521.
  • 4Karypis G,Han E-H,Kumar V.CHAMELEON:A Hierarchical Clustering Algorithm Using Dynamic Modeling[J].IEEE Computer,1999,32(8):68-75.
  • 5Ester M,Kriegel H-P,Sander J,et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].Portland:Proceedings of the 2nd ACM SIGKDD,1996.226-231.
  • 6Hinneburg A,Keim D.An Efficient Approach to Clustering Large Multimedia Databases with Noise[C].New York:Proceedings of the 4th ACM SIGKDD,1998.58-65.
  • 7Wang W,Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C].Athens:Proceedings of the 23rd Conference on VLDB,1997.186-195.
  • 8Wang W,Yang J,Muntz R R.STING+:An Approach to Active Spatial Data Mining[C].Sydney:Proceedings of the 15th ICDE,1999.116-125.
  • 9Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.94-105.
  • 10Sheikholeslami G,Chatterjee S,Zhang A.WaveCluster:A Multireso-lution Clustering Approach for Very Large Spatial Databases[C].New York:Proceedings of the 24th Conference on VLDB,1998.428-439.

共引文献241

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部