期刊文献+

一种基于置信度差异代价敏感的主动学习算法

Active Learning Algorithm Based on Confidence Diversity Cost Sensitivity
下载PDF
导出
摘要 主动学习时向专家查询得到的标注如果带有噪声,将会影响学习的性能。为减少噪声,人们提出了基于"少数服从多数"的多专家主动学习算法,但该算法的缺点是代价往往太高。文章采用了一种自我训练(self-training)方法,对某些平均置信度高的样本,直接确定其分类标注,不必向专家查询,以节省学习代价。同时,使用置信度差异作为度量标准,选取那些最不确定的样本向专家查询,提高了学习效率。在UCI数据集上验证了本文算法的有效性。 It is known that the noise in labels deteriorates the performance of active learning. To reduce the inverse effect of the noise, many algorithms based on multiple experts have been proposed. The drawback of these algorithms lies in that it costs too much. This paper proposes a self-training method which can directly determine the labels of some unlabeled instances without consulting the experts so as to reduce the cost of learning. Simultaniously, to improve learning efficiency, confidence diversity as a measure is employed and uncertain instances are selected to be labeled without consulting experts. The experimental results on UCI data sets validated the effectiveness of the proposed method.
作者 武永成
出处 《湖北工程学院学报》 2013年第6期16-19,共4页 Journal of Hubei Engineering University
关键词 主动学习 噪声数据 置信度差异 自我训练 active iearning noisy data confidence diversity self-training
  • 相关文献

参考文献7

  • 1Settles B. Active Learning Literature Survey[R].University of Wisconsin-Madison,2010.
  • 2Zhu X. Semi-supervised learning literature survey[R].University of Wisconsin-Madison,2005.
  • 3Zhou Z H,Li M. Semi-supervised learning by disagreement[J].{H}Knowledge and Information Systems,2010,(03):415-439.
  • 4Turney P D. Types of cost in inductive concept learning[A].2000.15-21.
  • 5Efron B,Tibshirani R. An introduction to the Bootstrap[M].{H}CRC Press,1994.8-10.
  • 6Blake C,Keogh E,Merz C J. UCI repository of machine learning databases[EB/OL].http://www.ics.uci.edu/mlearn/MLRepository.html,.
  • 7Tong S,Koller D. Support vector machine active learning with applications to text classification[J].{H}JOURNAL OF MACHINE LEARNING RESEARCH,2001.45-66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部