摘要
设a是正奇数.对于非负整数n,设Ln(a)=αn+βn,其中α=(1/2)(a+a2槡+4),β=(1/2)(a-a2槡+4).本文运用Pell方程的性质讨论2在Ln(a)中的次数ord2Ln(a),证明了当n0(mod3),n≡0(mod6),或者n≡3(mod6)时,ord2Ln(a)分别等于0,1或者2.
Let a be a positive odd integer. For any nonnegative onteger n, let L,, (a)= an +β^n, where a= (1/2)(a+ √a^2+4) and β= (1/2)(a-√ a2+4). Using some properties of Pell equations, the order ord2 L.(a) of 2 in Ln(a) is discussed, and prove that ord2Ln(a)=0,1 or 2 according as n≠0(mod6), n≡0 (rood6) or n≡3 (rood6).
出处
《西安工程大学学报》
CAS
2013年第6期824-826,共3页
Journal of Xi’an Polytechnic University
基金
国家自然科学基金资助项目(11226038)
陕西省教育厅专项基金资助项目(12JK0877)