期刊文献+

多维跳跃扩散模型下一篮子期权定价

Pricing Basket Option in Multi-dimensional Jump-diffusion Model
下载PDF
导出
摘要 考虑了由一个零息债券和k个由多维跳跃扩散过程驱动的风险资产组成的金融市场模型.基于该金融市场模型,利用远期利率模型和远期鞅测度方法,同时借鉴Gentle处理近似问题的技巧,获得了欧式一篮子期权的近似定价公式,推广了Black-Scholes模型下的结果. A financial market which consists of a zero-coupon bond and k risk assets governed by the multidimensional jump-diffusion processes is considered.Based on this financial model,a pricing formula of European basket option is obtained by applying the HJM model and the forward martingale measure method and simultaneously using approximation technique proposed by Gentle.The result extends the Black-Scholes option pricing formula.
作者 蒋英
出处 《宁夏大学学报(自然科学版)》 CAS 2013年第4期289-293,共5页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(71271135)
关键词 跳跃扩散模型 一篮子期权 等价鞅测度 jump-diffusion model basket option equivalent martingale measure
  • 相关文献

参考文献15

  • 1BLACK F,SCHOLES M. The pricing of options and corporate liabilities[J].{H}JOURNAL OF POLITICAL ECONOMY,1973,(03):637-654.
  • 2RUNGGALDIER W J. Jump-diffusion models[A].North-Holland:Elesevier,2003.169-209.
  • 3DRANEV Y,DABROWSKI A R. Jump-diffusion markets:equivalent measures and optimality[A].Canada:LRSP,2004.
  • 4MUSIELA M,RUTKOWSKI M. Martingale methods in financial modelling[M].{H}Berlin:Springer-Verlag,1997.
  • 5KOU S G. A jump-diffusion model for option pricing[J].{H}Management Science,2002,(08):1086-1101.doi:10.1287/mnsc.48.8.1086.166.
  • 6AASE K K. Contingent claims valuation when the security price is a combination of an Ithato process and a random point process[J].Stochastic Processes and Their Applications,1988,(02):185-220.
  • 7RONG Situ. Theory of stochastic differential equations with jumps and applications:mathematical and analytical techniques with applications to engineering[M].{H}New York:Springer-Verlag,2005.434.
  • 8闫海峰,刘三阳.带有Poisson跳的股票价格模型的期权定价[J].工程数学学报,2003,20(2):35-40. 被引量:46
  • 9钱晓松.跳扩散模型中的测度变换与期权定价[J].应用概率统计,2004,20(1):91-99. 被引量:28
  • 10MERTON R C. Option pricing when underlying stock returns are discontinuous[J].{H}Journal of Financial Economics,1976,(1/2):125-144.

二级参考文献23

  • 1Blacd F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973;81(3) :637 - 654.
  • 2Lo A W, Mackinlary A C. Stock market prices do not follow random walks: evidence from a simple specification test[ J]. Review of Financial Studies, 1988 ; 1:41 - 66.
  • 3Knut K, AASE. Contingent claims valuation when the security price is combination of an its process and a random point process[J]. Stochastic processes and their Applications, 1988 ;28(2) :185 -220.
  • 4Merton M C. Continuous-Time finance[ M]. Cambridge M A: Blackwell Publishers, 1990.
  • 5Martin Schweizer. Option heading for semi-martingales[J]. Stochastic Processes and Their Application, 1991 ;37(3) :339 - 360.
  • 6Chan T. Pricing contingent claims on stocks driven by Levy processes[ J ]. Annals of Appl Prob, 1999;9 (2) :504- 528.
  • 7Kallsen Jan. Optimal portfolios for exponential Levy processes [ J ]. Math Meth Oper Res, 2000 ; 51 (3) : 357 - 374.
  • 8Jean Luc Prigent. Option pricing with a general marked point process[J]. Mathematics of Operations Research,2001 ;26(1) :50 - 66.
  • 9Bladt M, Rydberg T H. An actuartial approach to option pricing under the physical measure and without market assumptions[ J]. Insurance: Mathematics and Economics, 1998 ;22 ( 1 ) :65 - 73.
  • 10Cox J C, Roos S A, Rubinstein M. Option pricing: a simplified approach[J]. Journal of Economics,1979;7(3) :229 - 263.

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部