期刊文献+

完全非线性三阶微分方程周期解的存在性

Existence of Periodic Solutions for Fully Third-order Nonlinear Ordinary Differential Equation
下载PDF
导出
摘要 借助Fourier分析的方法及非线性项的扰动技巧,利用Leray-Schauder不动点定理,获得了完全非线性三阶微分方程u'''(t)=f(t,u(t),u′(t),u″(t)),t∈Rω-周期解的存在性及唯一性,其中f:R×R×R×R→R连续,关于t以ω为周期. With the aid of the method of Fourier analysis and the perturbation technique of nonlinear term,the existence and uniqueness of ω-periodic solutions for the following fully third-order nonlinear ordinary differential equation is obtained by Leray-Schauder fixed point theorem,u("')(t) =f(t,u(t),u' (t),u"(t)),t ∈ R,where f:R × R × R × R→R is a continuous function and is ω-periodic in t.
出处 《宁夏大学学报(自然科学版)》 CAS 2013年第4期294-297,共4页 Journal of Ningxia University(Natural Science Edition)
基金 国家自然科学基金资助项目(71002037)
关键词 完全非线性微分方程 周期解 LERAY-SCHAUDER不动点定理 fully nonlinear differential equation periodic solutions Leray-Schauder fixed point theorem
  • 相关文献

参考文献2

二级参考文献6

  • 1刘衍胜,綦建刚.不连续条件下二阶非线性微分方程的边值问题[J].工程数学学报,1998,15(2):72-78. 被引量:1
  • 2Leela S. Monotone method for second oder periodic boundary value problems. Nonlinear Anal. 1983,7: 349-355.
  • 3Alberto Cabada. The method of lower and upper solutions for third-order periodic boundary value problems. J. Math. Anal. Appl., 1995, 195: 568-589.
  • 4Pierpaolo Omari, Maurizio Trombetta. Remarks on the lower and upper solutions method for second and third order periodic boundary value problems. Appl. Math. Comput., 1992, 50: 1-21.
  • 5Juan J, Nieto. On the existence of periodic solutions for the third-order nonlhlear ordinary differ- ential equations, commen. Math. univ. cirolinae, 1991, 32(3): 495-499.
  • 6王伟,史希福.三阶常微分方程两点边值问题解的存在性及单调迭代法[J].数学学报(中文版),1992,35(2):213-219. 被引量:20

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部