摘要
借助Fourier分析的方法及非线性项的扰动技巧,利用Leray-Schauder不动点定理,获得了完全非线性三阶微分方程u'''(t)=f(t,u(t),u′(t),u″(t)),t∈Rω-周期解的存在性及唯一性,其中f:R×R×R×R→R连续,关于t以ω为周期.
With the aid of the method of Fourier analysis and the perturbation technique of nonlinear term,the existence and uniqueness of ω-periodic solutions for the following fully third-order nonlinear ordinary differential equation is obtained by Leray-Schauder fixed point theorem,u("')(t) =f(t,u(t),u' (t),u"(t)),t ∈ R,where f:R × R × R × R→R is a continuous function and is ω-periodic in t.
出处
《宁夏大学学报(自然科学版)》
CAS
2013年第4期294-297,共4页
Journal of Ningxia University(Natural Science Edition)
基金
国家自然科学基金资助项目(71002037)