期刊文献+

四阶双曲型Kac-Moody代数的极小虚根 被引量:2

Minimal Imaginary Roots of Kac-Moody Algebra of Hyperbolic Type of Order 4
下载PDF
导出
摘要 研究了双曲型Kac-Moody代数的特殊虚根——极小虚根的基本性质及其对应的Dynkin图的特性,给出了四阶双曲型Kac-Moody代数的极小虚根的计算方法,并计算出了所有四阶双曲型Kac-Moody代数的极小虚根. The Kac-Moody algebra of hyperbolic type was focused.The basic properties of minimal imaginary roots which are special imaginary roots and the characteristics of the corresponding Dynkin diagram were investigarted.A method to calculate the minimal imaginary roots of Kac-Moody algebra of hyperbolic type of order 4 was presented and a complete list of them was given.
出处 《上海理工大学学报》 CAS 北大核心 2013年第6期531-535,共5页 Journal of University of Shanghai For Science and Technology
基金 国家自然科学基金资助项目(11126095 11201299)
关键词 KAC-MOODY代数 极小虚根 双曲型 Kac-Moody algebra minimal imaginary root hyperbolic type
  • 相关文献

参考文献9

二级参考文献7

共引文献12

同被引文献18

  • 1吴永,任斌,朱林生.广义Kac—Moody代数的虚根[J].数学年刊(A辑),1993,1(1):128-133. 被引量:3
  • 2李振亨.关于Kac-Moody代数的虚根的注记[J].河北大学学报(自然科学版),1994,14(2):60-63. 被引量:2
  • 3张贺春.关于虚根的几个注记[J].科学通报,1994,39(4):295-297. 被引量:3
  • 4Schneider C. A computer-based approach to the classification of nilpotent Lie algebras E J ]. Experimental Mathematics, 2005,14(2) : 153 - 160.
  • 5de Graaf W A. Classification of six-dimension of nilpotent Lie algebras over fields of characteristic not 2[J]. Journal of Algebra, 2007,309(2) : 640 - 653.
  • 6HumphreysJ E. Introduction to Lie algebras andrepresentation theory [ M]. New York: Springer- Verlag, 1972.
  • 7Coelho S P. The automorphism group of a structural matrix algebra [ J ]. Linear Algebra and Its Applications, 1993,195 : 35 - 58.
  • 8Varadarajan V S. Lie Groups, Lie algebra and their representations E M ]. Beijing: Collaege Press, 1998 : 49 - 67.
  • 9Allison B, Benkart G, Gao Y. Central extensions of Lie algebras graded by finite root system [ J ]. Mathematische Annalen, 2000,316(3):499 - 527.
  • 10Cical6 S, de Graaf W A, Schneider C. Six-dimensional nilpotent Lie algebras [J]. Linear Algebra and its Applications, 2012,436 (1):163 - 189.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部