摘要
在对称锥上提出了一种新的Mehrotra型预估矫正算法,每部迭代都跟踪宽领域N-∞(τ),但不一定属于该邻域,但是总在更宽的邻域N(τ,β),我们给出了比原邻域更好的复杂性O(n(1/2)L),在对称锥规划上,它具有路径跟踪算法最好的复杂性.
In this article we propose a new Mehrotra-type predictor-corrector interior point algorithm for symmetric cone programming. Each iteration always follows the usual wide neighborhood N-∞ (τ). Even though the iteration does not al- ways stay within this neighborhood, it must stay within a wider neighborhood N(τ ,β). It shows that the algorithm has iteration complexity O(√nL), which is better than that of the usual wide neighborhood, and O(√nL) has the best result in regard to the iteration complexity in the context of path-following method for symmetric cone programming.
出处
《黄冈师范学院学报》
2013年第6期10-13,共4页
Journal of Huanggang Normal University
基金
中央高校基本科研业务费专项资助项目(K50513100007)
关键词
对称锥规划
Mehrotra型预估矫正算法
宽领域
多项式复杂性
symmetric cone programming
Mehrotra-type predictor correctorlnterior-point method
wide neighborhood
polynomial complexity