期刊文献+

全球海洋Argo网格资料集及其验证 被引量:9

Study on the global ocean Argo gridded dataset and its validationcommunity in coastal waters of Yantai
下载PDF
导出
摘要 简要介绍了全球海洋Argo网格资料集的制作过程,并着重探讨了该数据集与历史观测资料集(如WOA09和TAO),以及同类型的Argo网格数据集等进行的比较与验证结果,发现利用逐步订正法构建的Argo网格资料与其他数据集相比,除了相互间吻合程度较高,能较客观地呈现出全球海洋中的一些大、中尺度海洋特征外,由Argo资料揭示的一些重要物理海洋特征的结构显得更细致,更能反映这些现象的演变过程和变化规律;加上Argo资料严格的质量控制过程,确保了重构的网格数据集的质量和可靠性。该资料集不仅可以作为研究全球海洋状况或揭示物理海洋现象的基础资料,还可为海洋数值模式的开边界和初始场提供参考依据。 The production of the global ocean Argo gridded dataset was briefly introduced in this paper. The comparison of the dataset with historical observation datasets (such as WOA09 and TAO)and other Argo gridded datasets suggested that it was not only in good agreements with others, but also could objectively present some ocean phenomena from middle to large scales. The structures or characteristics of some important physical oceanographic phenomena revealed by the Argo data were more detailed in the global ocean ,which could better reflect their evolution processes and variations. The strict quality control of Argo data ensured the reconstructed gridded dataset in good quality and reliability. The Argo gridded dataset not only could be used as the basic data in the study of global ocean conditions to reveal the physical oceanographic phenomena, but also provided references for open boundary and initial fields of ocean numerical model.
出处 《海洋通报》 CAS CSCD 北大核心 2013年第6期615-625,共11页 Marine Science Bulletin
基金 海洋公益性行业科研专项(201005033) 科技部科技基础性工作专项(2012FY112300) 卫星海洋环境动力学国家重点实验室开放基金(SOED1307) 国家海洋局第二海洋研究所基本科研业务费专项(JT0904) 国家自然科学基金(41006052) 浙江省重点科技创新团队项目(2010R50035)
关键词 ARGO 逐步订正法 网格资料集 验证 全球海洋 Argo successive correction gridded dataset validation global ocean
  • 相关文献

参考文献18

  • 1Akima H. A new method for interpolation and smooth curve Fit-ting based on local procedures[J].J Assoc Comput Mech,1970.589-602.
  • 2Barnes S L. A technique for maximizing details in numerical weather Map analysis[J].{H}Journal of Applied Meteorology,1964.396-409.
  • 3Barnes S L. Mesoscale objective analysis using weighted time-series observations. NOAA Tech. Memo. ERL NSSL-62[R].National Severe StoST Laboratory,Norman,OK,1973.41.
  • 4Bhaskar T U,Ravichandran M. Devender R An operational Objective Analysis system at INCOIS for generation of Argo Value Added Products,Technical Report No. INCOIS/MOG-TR-2/07[R].2007.
  • 5Boyer T P,Stephens C,Antonov J I. WorldOcean Atlas 2001, Vol. 2:Salinity[A].U S Government Printing Office,Washington,D.C,2002.165.
  • 6Cressman G P. An operational objective analysis system[J].{H}Monthly Weather Review,1959.367-372.
  • 7Gaillard F E,Autret V,Thierry. Quality control of large Argo data sets[J].{H}Journal of Atmospheric and Oceanic Technology,2009.337-351.
  • 8Hosoda S,Ohira T,Nakamura T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float Observations[J].JAMSTEC Rep Res Dev,2008.47-59.
  • 9Levitus S. Climatological atlas of the World Ocean,NOAA Prof. Pap. 13[R].U.S.Gov.Print.Off.,Washington,D.C,1982.
  • 10Locarnini R A,Mishonov A V,Antonov J I. World Ocean Atlas 2009, Volume 1:Temperature. S. Levitus, Ed., NOAA Atlas NESDIS 68[R].U.S.Government Printing Office,Washington,D C,2010.184.

二级参考文献21

  • 1ZHU Jiang1,2, ZHOU Guangqing1, YAN Changxiang1, FU Weiwei1 & YOU Xiaobao1,3 1. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,2. Jiangsu Key Laboratory of Meteorological Disaster, Nanjing University of Information Science and Technology, Nanjing 210044, China,3. Beijing Institute of Applied Meteorology, Beijing 100029, China.A three-dimensional variational ocean data assimilation system:Scheme and preliminary results[J].Science China Earth Sciences,2006,49(11):1212-1222. 被引量:35
  • 2许东峰,刘增宏,徐晓华,许建平.西北太平洋暖池区台风对海表盐度的影响[J].海洋学报,2005,27(6):9-15. 被引量:27
  • 3刘增宏,许建平,朱伯康,孙朝辉,张立峰.The upper ocean response to tropical cyclones in the northwestern Pacific analyzed with Argo data[J].Chinese Journal of Oceanology and Limnology,2007,25(2):123-131. 被引量:15
  • 4Akima H, 1970. A new method for interpolation and smooth curvefittingbased on local. Journal of the ACM,17(4) :589-602.
  • 5Barnes S L, 1964. A technique for maximizing details in numericalweather Map analysis J Appl. Meteor, 3: 396-409.
  • 6Barnes S L, 1970. Mesoscale objective analysis using weighted time-series observations. NO A A Tech. Memo. ERL NSSL-62, NationalSevere StoST Laborat-ory, Norman,OK, 1973,41pp.procedures,J. Assoc. Comput.Mech, 17: 589-602.
  • 7Bhaskar T U, Havichandran M,Devender R, 2007. An operationalObjective Analysis system at INCOIS for generation of Argo ValueAdded Products, Technical Report No. INCOIS/MOG-TR-2/07.
  • 8Cressman G P, 1959. An operational objective analysis system. Mon.Wea. Rev, 87: 367-372.
  • 9Gaillard F E, Autret V Thierry, et al, 2009. Quality control of largeAigo datasets J. Atmos. Oceanic. Technol,26 : 337-351.
  • 10Hosoda S,Ohira T, Nakamura T, 2008. A monthly mean dataset ofglobal oceanic temperature and salinity derived from Argo floatObservations JAMSTEC Rep. Res. Dev, (8) November: 47-59.

共引文献35

同被引文献108

引证文献9

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部