期刊文献+

变异粒子群优化的BP神经网络在入侵检测中的应用 被引量:8

Application of mutation particle swarm optimization based BP neural network in the intrusion detection system
下载PDF
导出
摘要 针对入侵检测系统的自主学习性、实时性,提出带变异算子的粒子群优化方法,并用该方法优化BP神经网络以加快其收敛速度,提出了MPSO_BP混合优化算法.为提高入侵检测系统的检测率、降低误报率,提出了一种新的入侵检测模型(MPBIDS).采取Iris数据集对3个BP神经网络进行模拟实验,结果表明,优化后的BP神经网络具有更好的收敛速度和精度.将改进的BP神经网络应用到入侵检测中,采取KDDCUP99为测试数据集,仿真结果表明,基于改进BP神经网络的入侵检测模型能提高检测率、降低误报率. A aiming at the properties of real-time performance and self-learning of the intrusion detection system (IDS), an improved particle swarm optimization (PSO) based on the mutation operator was proposed, which was used to optimize BP neural network, so as to accelerate convergence speed of BP neural network, thus, the MPSO _BP hybrid optimization algorithm is presented. In order to increase detection rate and lower false alarm rate of the intrusion detection system, a new intrusion detection model (MPBIDS) was put forward. Iris data set was applied to the three BP neural networks for simulation. Experiment results show that the optimized BP neural network had better convergence speed and accuracy. Based on this finding, the improved BP network was applied to intrusion detection, taking KDDCUP99 as the test data set. The simulation result proves that the IDS with improved BP network can improve the detection rate and reduce the false alarm rate.
作者 宋玲 常磊
出处 《智能系统学报》 CSCD 北大核心 2013年第6期558-563,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60963022)
关键词 变异算子 入侵检测系统 粒子群优化算法 BP神经网络 mutation operator intrusion detection system particle swarm optimization BP neural network
  • 相关文献

参考文献8

  • 1CLAUDINO E C, ABDELOUAHAB Z,TEIXEIRA M M.Management and integration of information in intrusion de-tection system ; data integration system for IDS based multi-agent systems [ C ] //IEEE/WIC/ACM International Confer-ences on Web Intelligence and Intelligent Agent Technolo-gy—Workshops. Hong Kong, China, 2006: 49-52.
  • 2POLIR,KENNEDY, BLACKWELL T. Particle swarm opti-mization :an overview [ J ]. Swarm Intelligence,2007,1(1) : 33-57.
  • 3GARCIA-YILLORIA A, PASTOR R. Introducing dynamicinto a discrete particle swarm optimization [ J]. Computersand Operations Research, 2009, 36(3) : 951-966.
  • 4PRADHAN B, LEE S. Regional landslide susceptibility a-nalysis using back-propagation neural network model at Ca-meron Highland,Malaysia [ J ] . Earth and EnvironmentalScience, 2010, 7(1): 13-30.
  • 5陶新民,王妍,赵春晖,刘玉.双尺度协同变异的离散粒子群算法[J].哈尔滨工程大学学报,2011,32(12):1617-1623. 被引量:4
  • 6KAOY T, ZZHARA E. A hybrid genetic algorithm and par-ticle swarm optimization for multimodal functions [ J ] . Ap-plied Soft Computing, 2008,8(2) : 849.
  • 7肖立中,邵志清,马汉华,王秀英,刘刚.网络入侵检测中的自动决定聚类数算法[J].软件学报,2008,19(8):2140-2148. 被引量:46
  • 8刘俊芳,高岳林.带自适应变异的量子粒子群优化算法[J].计算机工程与应用,2011,47(3):41-43. 被引量:24

二级参考文献25

共引文献71

同被引文献74

引证文献8

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部