期刊文献+

传代对残耳软骨细胞体内软骨形成能力的影响 被引量:4

Effects of Continuous Passage on the Cartilage Forming Ability of Human Remnant Ear Chondrocytes in Vivo
下载PDF
导出
摘要 目的:研究传代对残耳软骨细胞体内软骨形成能力的影响。方法分离培养人残耳软骨细胞,将第3-8代细胞分别复合聚羟基乙酸/聚乳酸支架,构建组织工程化软骨;体外培养4周后植入裸鼠体内观察8周。采用组织学染色观察各组标本的软骨形成情况;Real-time PCR检测软骨分化相关基因的表达;生物力学分析新生软骨的弹性模量。结果各代复合物体外培养4周时均不能形成软骨组织,但第3-5代残耳软骨细胞COL 2A1、第3-4代的SOX 9和第3代的DLK 1仍可维持较高的表达水平(P〈0.05);体内植入8周后,第3-6代复合物均有不同程度的弹性软骨结构形成,并随代次增高而减少,第3-6代复合物的弹性模量明显高于第7、8代。结论残耳软骨细胞传至第4代仍能保持良好的体内软骨形成能力,但扩增传代对残耳软骨细胞软骨表型去分化的影响在第7代后已无法逆转。 Objective To investigate the cartilage forming ability of human remnant ear chondrocytes with continuous passage in vivo. Methods Human remnant ear chondrocytes were isolated and cultured, then seeded onto Polyglycolic acid/Polylactic acid scaffolds. The cell-scaffold complexes were cultured for 4 weeks in vitro and then were implanted into nude mice for 8 weeks. The in vivo fates of cell-scaffold complexes constructed by P3-8 remnant ear chondrocytes and Polyglycolic acid/Polylactic acid scaffolds were evaluated by histological assays, quantitative analysis of gene expression and biomechanical test. Results All the complexes constructed by P3-8 remnant ear chondrocytes were unable to form cartilaginous structure in 4 weeks in vitro. However, the genes expression of COL2A1 in P3-5, SOX9 in P3-4, and DLK1 in P3 were significantly higher (P〈0.05). After 8 weeks in vivo, P3-6 complexes could partially form cartilage tissue, which showed less and less with passage. The elastic modulus were significantly higher in P3-6 complexes (P〈0.05) than in P7-P8 complexes. Conclusion The cartilage forming ability was well maintained in remnant ear chondrocytes within P4 in vivo and was totally lost after P7.
出处 《组织工程与重建外科杂志》 2013年第6期301-305,共5页 Journal of Tissue Engineering and Reconstructive Surgery
基金 国家自然科学基金(31300801) 北京市科技计划项目(D090800046609003)
关键词 传代 残耳软骨细胞 组织工程软骨 Passage Remnant ear chondrocyte Tissue engineered cartilage
  • 相关文献

参考文献10

  • 1Kamil SH,Vacanti MP,Vacanti CA. Microtia chondrocytes as a donor source for tissue-engineered cartilage[J].{H}LARYNGOSCOPE,2004,(12):2187-2190.
  • 2Yanaga H,Imai K,Fujimoto T. Generating ears from cultured autologous auricular chondrocytes by using two-stage implantation in treatment of microtia[J].{H}Plastic and Reconstructive Surgery,2009,(03):817-825.
  • 3Chen GP,Takashi S,Takashi U. Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh[J].{H}FEBS Letters,2003,(1-3):95-99.
  • 4Ando K,Imai S,Isoya E. Effect of dynamic compressive loading and its combination with a growth factor on the chondrocytic phenotype of 3-dimensional scaffold-embedded chondrocytes[J].{H}ACTA ORTHOPAEDICA,2009,(06):724-733.
  • 5Caron MM,Emans PJ,Coolsen MM. Redifferentiation of dedifferentiated human articular chondrocytes:comparison of 2D and 3D cultures[J].{H}Osteoarthritis and cartilage,2012,(10):1170-1178.
  • 6Schuh E,Hofmann S,Stok K. Chondrocyte redifferentiation in 3D:the effect of adhesion site density and substrate elasticity[J].{H}Journal of Biomedical Materials Research Part A,2012,(01):38-47.
  • 7Wang Y,Sul HS. Pref-1 regulates mesenchymal cell commitment and differentiation through Sox9[J].{H}CELL METABOLISM,2009,(03):287-302.
  • 8Taipaleenmaki H,Harkness L,Chen L. The crosstalk between transforming growth factor-beta1 and delta like-1 mediates early chondrogenesis during embryonic endochondral ossification[J].{H}STEM CELLS,2012,(02):304-313.
  • 9Chen L,Qanie D,Jafari A. Delta-like 1/fetal antigen-1(Dlk1/FA1)is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway[J].{H}Journal of Biological Chemistry,2011,(37):32140-32149.
  • 10Harkness L,Taipaleenmaki H,Mahmood A. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker[J].Stem Cell Rev,2009,(04):353-368.

同被引文献58

  • 1郑丕留.中国猪品种志[M].上海:上海科学技术出版社,1986..
  • 2王玮.整形外科学[M].杭州:浙江科学技术技术出版社,1999.1113.
  • 3Romo T 3rd, Reitzen SD. Aesthetic microtia reconstruction with Medpor[ J]. Facial Plast Surg, 2008,24 ( 1 ) :120-128.
  • 4Cao Y, Vacanti JP, Paige KT, et al. Transplantation of chondro- eytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear [ J ]. PIast Reeonstr Surg, 1997,100 ( 2 ) : 297 -302 ; discussion 303-304.
  • 5Kang HW, Park JH, Kang TY, et al. Unit cell-based computer-ai- ded manufacturing system for tissue engineering [ J ]. Biofabrica-tion, 2012,4 ( 1 ) :015005.
  • 6Wang X. Intelligent freeform manufacturing of complex organs[J]. Artif Organs, 2012,36( 11 ) :951-961.
  • 7Stoker NG, Mankovith N J, Valentino D. Stereolithographic mod- els for surgical planning: preliminiary report[J]. J Oral Maxillo- fac Surg, 1992,50(5) :466-471.
  • 8. Levine JP, Patel A, Saadeh PB, et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art[J]. J Craniofac Surg, 2012,23(1) : 288-293.
  • 9Saijo H, Igawa K, Kanno Y, et al. Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology [ J ]. J Artif Organs, 2009,12 ( 3 ) : 200-205.
  • 10Kozakiewicz M, Elgalal M, Loba P, et al. Clinical application of 3D pre-bent titanium implants for orbital floor fractures[ J]. J Craniomaxillofac Surg, 2009,37 (4) :229-234.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部