期刊文献+

基于云计算的卡尔曼滤波速度诱导模型研究

A Speed Guidance Model of Kalman Filter Based on Cloud Computing
下载PDF
导出
摘要 利用自适应卡尔曼滤波器来建立城市快速路瞬时交通预测模型,同时通过Hadoop基础框架及MapReduce的编程模型设计和开发了交通属性指标最小约简云处理系统,并在此基础上对车辆进行速度诱导控制,建立了以车辆总行程时间为目标函数的诱导优化模型。并以上海南北高架南段东线为例建立了仿真场景,对模型进行了参数标定与校验,通过有效性与性能分析表明:用云计算能够提高运算效率,且速度诱导控制后,降低了路段上交通流的整体速度差异,提高了交通安全性。 The paper establishes the speed guidance model of urban expressway based on the Kal- man filter, which can provide the role of short-term traffic flow prediction. And the paper designs and de- velops the minimum attribute reduction system of the transport properties indicators based on Hadoop and MapReduce. In addition, the model regards gross vehicle travel time as the objective function to proceed optimized design. Then, it simulates and analyses the results based on the east line of the southern sec- tion of Shanghai North-South Elevated road. Simulation result shows that cloud computing can improve the operation efficiency. And the speed guidance control reduces the overall difference of speed of the traffic flow that can improve traffic safety and the model is effective.
出处 《公路工程》 北大核心 2013年第6期92-96,105,共6页 Highway Engineering
基金 国家自然科学基金(61004113和71072027) 江苏省高校自然科学基金(12KJB580005)
关键词 云计算 HADOOP MAPREDUCE 卡尔曼滤波 速度诱导 最小约简 Cloud Computing Hadoop MapReduce Kalman filter Speed guidance minimal reduction
  • 相关文献

参考文献11

二级参考文献39

  • 1岳毅宏,韩文秀,程国平.多变量时间序列相空间重构中参数的确定[J].控制与决策,2005,20(3):290-293. 被引量:14
  • 2李洪萍,裴玉龙.基于混沌理论的交通流短时预测模型[J].昆明理工大学学报(理工版),2006,31(5):95-99. 被引量:5
  • 3朱信山.高速公路交通预测分配实用方法研究[J].中南公路工程,2007,32(3):161-164. 被引量:3
  • 4杨晓光 杨佩昆 等.同时考虑进出口匝道车辆排队约束的城市高速道路流入交通准动态控制手法.城市基础设施发展国际学术研讨会论文集[M].杭州:浙江大学出版社,1996.45-462.
  • 5谭满春,冯荦斌,徐建闽.基于ARIMA与人工神经网络组合模型的交通流预测[J].中国公路学报,2007,20(4):118-121. 被引量:68
  • 6Castro-Neto M, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2008,69 (7) : 1- 10.
  • 7Vlahogianni E I,Karlaftis M G,Golias J C. Temporal evolution of short-term urban traffic flow:a nonlinear dynamics approach [J].Computer-Aided Civil and Infrastructure Engineering, 2008,23 (10) : 536- 548.
  • 8Casdagli M C. Recurrence plots revisited[J]. Physics D,1997,108(1):12-44.
  • 9Strozzi F, et al. Recurrence quantification analysis and state space divergencere construction for financial time series analysis[J]. Physics A, 2007,376 (7) : 487-499.
  • 10Gao J B, Cai H Q. On the structures and quantification of recurrence plots[J]. Physics Letters A,2000, 270(3) :75-87.

共引文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部