期刊文献+

基于多种群遗传神经网络的船舶发电机故障诊断 被引量:7

Fault diagnosis of ship generators based on multi- population genetic neural network
下载PDF
导出
摘要 为及时发现船舶发电系统的早期故障,通过多种群遗传算法与反向传播(BackPropagation,BP)神经网络算法相结合,提出一种基于多种群遗传神经网络算法的船舶发电机故障诊断方法.利用该算法对实例进行故障诊断,结果证明该算法能有效克服BP神经网络收敛速度慢和易出现局部极小值的缺点.该算法有全局搜索能力强、优化速度快的特点,具有一定的应用前景. To detect early faults of ship power systems timely, through the combination of the multi-popu- lation genetic algorithm and the BackPropagation (BP) neural network algorithm, a fault diagnosis method for ship generators based on a multi-population genetic neural network algorithm is proposed. The fault diagnosis for real examples is done by the algorithm. The results show that the algorithm can effectively overcome the weaknesses of BP neural network that has a slow convergence speed and is prone to a local minimum value. The algorithm is of strong global search capability and a rapid optimization speed, and is of certain application prospect.
作者 杨鸣 施伟锋
出处 《上海海事大学学报》 北大核心 2013年第4期18-22,共5页 Journal of Shanghai Maritime University
基金 上海市教育委员会科研创新重点项目(12ZZ155) 高等学校博士学科点专项科研基金(20123121110003)
关键词 故障诊断 多种群遗传算法 神经网络 船舶发电机 fault diagnosis multi-population genetic algorithm neural network ship generator
  • 引文网络
  • 相关文献

参考文献12

二级参考文献71

共引文献329

同被引文献53

引证文献7

二级引证文献13

;
使用帮助 返回顶部