期刊文献+

基于特征选择的双边滤波点云去噪算法 被引量:58

Bilateral filtering denoise algorithm for point cloud based on feature selection
下载PDF
导出
摘要 为了去除与真实点混合在一起的噪声并更好地保留特征,将点云噪声分为3类,将其中与真实点混合在一起的数据点称为第3类噪声点,利用改进的双边滤波算法去除该类噪声点.首先,利用邻域点判断该点属于特征点还是非特征点;然后,根据不同范围的点云来计算特征点和非特征点的双边滤波因子,实现基于特征选择的双边滤波点云去噪.利用该算法对手持三维激光扫描仪获得的盒子及工业构件的激光点云数据进行平滑去噪处理.结果表明,所提算法在去除噪声的同时可以有效保持被扫描物体的特征,避免出现因双边滤波不能兼顾邻域点特征而产生的过度光顺现象. In order to remove the noise mixed with the real points and retain characteristics, the noise points are divided into three categories, among which the ones mixed with the real points are called as the third category noise points. By using the improved bilateral filtering algorithm, this kind of points can be removed. First, the points are judged to be feature points or non-feature points
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第A02期351-354,共4页 Journal of Southeast University:Natural Science Edition
基金 江西省数字国土重点实验室开放基金资助项目(DLLJ201315)
关键词 点云去噪 双边滤波 特征选择 曲率 point cloud denoise bilateral filtering feature selection curvature
  • 相关文献

参考文献4

二级参考文献37

  • 1柯映林,陈曦.叶片破损区域边界的自动提取算法研究[J].计算机辅助设计与图形学学报,2005,17(6):1316-1321. 被引量:6
  • 2朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 3苏旭.逆向工程中基于散乱数据点的曲面重构方法研究:硕士学位论文[M].南京:南京航空航天大学,2000..
  • 4Hawkins D M. Identification of outliers[J]. Biometrical Journal, 1980, 29(2): 198-200.
  • 5Johnson T, Kwok 1, Ng R. Fast computation of 2- dimensional depth contours [C]//Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining. New York: AAAI Press, 1998:224-228.
  • 6Jain A K, Murty M N, Flynn P J. Data clustering: a review [J]. ACM Computing Surveys, 1999, 31(3): 264-323.
  • 7Papadimitriou S, Kitawaga H, Gibbons P B, et al. LOCI: fast outlier deteetion using the local correlation integral [C]//Proceedings of the 19th International Conference on Data Engineering. Los Alamitos: IEEE Computer Society Press, 2003:315-326.
  • 8Knorr E M, Ng R T, Tucakov V. Distance-based outliers: algorithms and applications[J]. The VLDB Journal, 2000, 8 (3/4) : 237-253.
  • 9Breunig M M, Kriegel H, Ng R T, et al. Lof: identifying density-based local outliers I-C] //Proeeedings of ACM SIGMOD International Conference on Managernent of Data. New York: ACM Press, 2000:93-104.
  • 10Pauly M, Gross M, Kobbelt L P. Efficient simplification of point-sampled surfaces [C] //Proceedings of IEEE Visualization. Los Alamitos: IEEE Computer Society Press, 2002, 163-170.

共引文献145

同被引文献426

引证文献58

二级引证文献467

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部