期刊文献+

微生物燃料电池原位修复地下水硝酸盐污染 被引量:2

In-situ Remediation of Nitrate Pollution in Groundwater by Microbial Fuel Cell
下载PDF
导出
摘要 通过构建双室微生物燃料电池(MFC),以阳极室有机底物作为电子供体,阴极室为模拟地下水含水层,以硝酸盐作为电子受体,进行MFC法原位修复地下水硝酸盐污染的模拟实验,研究连续流水力停留时间、阴极反硝化菌抑制以及盐桥数对硝酸盐去除率的影响.研究结果显示:MFC法可以有效的降解硝酸盐污染,降解率达60%~70%;阴极室可以忽略反硝化菌的自养反硝化作用;延长水力停留时间和增加盐桥数都有利于提高硝酸盐的降解率. Constructing a double chamber microbial fuel cell (MFC). Using organic substrates in the anode chamber as electron donor. The cathode chamber is simulative groundwater aquifer and use nitrate in it as electron acceptor. Through the simulation experiments of in-situ remediation of nitrate pollution in groundwater by microbial filel cell, to study the impact of HRT, denitrifying bacteria in cathode and number of salt bridge on the nitrate removal rate. The results showed that, this method of MFC can effectively degrade nitrate pollution and the degradation rate of nitrate was 60 %-70 %, autotrophic denitrification of denitrification bacteria can be ignored in the cathode chamber, the degradation rate of nitrate can be improved by extending HRT and increasing the number of salt bridge.
出处 《广东化工》 CAS 2014年第1期93-94,共2页 Guangdong Chemical Industry
基金 国家自然科学基金资助项目(41072194)
关键词 微生物燃料电池 地下水 硝酸盐 原位修复 降解率 microbial fuel cell; groundwater; nitrate; in-situremediation; degradation ratc
  • 相关文献

参考文献4

二级参考文献93

共引文献120

同被引文献65

  • 1贾璐维,赵剑强,胡博,赵慧敏,黄楠.MFC强化同步短程硝化反硝化工艺的启动[J].环境工程学报,2015,9(4):1831-1836. 被引量:3
  • 2LOGANBE, HAMELERSB, ROZENDALR, etal. Microbial fuel cells methodology and technology [J]. Environmental Science Technology, 2006, 40 (17): 5181-5192.
  • 3LIU H, RAMNARAYANAN R, LOGAN B E. Production of electricity during wastewater treatment using a single chamber mierobialfuelcell[J]. Environmental Science & Technology, 2004, 38 (7): 2281-2285.
  • 4LIU X W, LI W W, YU H Q. Cathodic catalysts in bioelectrochemieal systems for energy recovery from wastewater[J]. Chemical Society Reviews, 2014, 43 (22) : 7718-7745.
  • 5ZHANG F, HE Z. Integrated organic and nitrogen removal with electricity generation in a tubular dual-cathode microbial fuel cell[J]. Process Biochemistry, 2012, 47 (22): 2146-2151.
  • 6PARK D H, LAIVENIEKS M, GUETTLERMV, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and EnviromnentalMierobiology, 1999, 65 (7): 2912-2917.
  • 7HOLMES D E, BOND D R, O'NEIL R A, et al. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments[J]. Microbial Ecology, 2004, 48 (2): 178-190.
  • 8PUIG S, COMA M, DESLOOVER J, et al. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science & Technology, 2012, 46 (4): 2309-2315.
  • 9THAUER R K, JUNGERMANN K, DECKER K. Energy conservation in chcmotrophic anaerobic bacteria[J]. Bacteriological Reviews, 1977, 41 (1): 100-180.
  • 10VIRDISB, READ ST, RABAEYK, etal. Biofilmstratification during simultaneous nitrification and deniU'ifieation (SND) at a biocathode[J]. Bioresource Technology, 2011, 102 (1): 334-341.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部