期刊文献+

基于电阻层析成像的汽车动力电池内部温度监测 被引量:7

Monitoring of internal temperature of vehicle power battery based on electrical resistance tomography
下载PDF
导出
摘要 为了直观地在线检测动力电池的温度,以确保动力电池的安全,提出了一种基于电阻层析成像的动力电池内部温度监测新方法。引入温纳-施伦贝尔装置模型分析电池内部温度检测机理,推导了电池内部温度与电阻率的数学关系;应用抑制平滑度最小平方法将多电极检测大数据进行图像反演重建,实现了对动力电池内部温度异变区的动态监测,并搭建了实验平台。文中通过建立相交区域试验模型,实验分析动力电池内部的电阻率静态分布,并验证方法可靠性。然后,实验分析动力电池内部电阻率的动态分布,得到45.5℃时反演图像色带差值增大了2.5倍,且坐标(0.047,0.000 5)内色带变化明显。最后,动态跟踪异变区临界温度。结果显示,在0.173Ω·m处突变骤升,电池内部产生异变。得到的结果表明,提出的方法可直观可靠地监测动力电池内部温度动态变化;可为动力电池的安全特性、寿命预测、负载控制等提供新的研究途径。 A novel method to monitoring the internal temperature of a power battery was proposed based on the Electrical Resistance Tomography(ERT) to complement the temperature measurement in online and to insure the safety of the power battery. Through introducing the Wenner-Schlumberger model in the ERT, the relationships between the internal temperatures and the resistivity of power battery were deduced. And by using the smoothness-constrained least-square method to invert the images of multi-electrode tomographic detection data, the internal abnormal temperature regions were monitored dynamically and a test platform was established. To validate the reliability of this new method, an intersection region model was established to analyze the static distribution of internal re-sistivity of the power battery. Then, dynamic resistivity distribution was analyzed in five different temperatures. The analysis shows that the color ribbon difference in the inversion image increases by 2.5 times in 45. 5 ^(2 as compared to those of other four tests, especially at coordinates (0. 047, 0. 000 5), which changes significantly. Finally, dynamic tracking critical temperature in mutational area shows that the resistivity rebounds suddenly at 0. 173 Ω·m, which indicates that a mutation occurs in the battery. These results demonstrate that the proposed method not only offers a visual and reliable monitoring result of internal temperature changes for the power battery, but also can provide a new research pathways for the power battery, such as safety characteristics, life prediction, and load control.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2014年第1期193-203,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51305141) 广东省中国科学院全面战略合作项目(No.2012B091100224) 中央高校基本科研业务费资助滚动项目(No.2014ZG0016) 广东省科技计划资助项目(No.2012B020314001)
关键词 电阻层析成像 温纳-施伦贝尔模型 汽车动力电池 温度检测 图像反演 Electrical Resistance Tomography(ERT) Wenner Schlumberger model vehicle power battery temperature detection image reconstruction
  • 相关文献

参考文献13

  • 1KHARE N,GOVIL R. Modeling automotive battery diagnostics[J].Power Electronics Technology,2008,(03):36-41.
  • 2SONG Y H,YANG Y X,HU Z CH. Present status and development trend of batteries for electric vehicles[J].Dianwang J ishu / Power System Technology,2011,(04):1-7.
  • 3CHEN Y F,EVANS W,SCHARRER G. Calculation of temperature rise in lithium polymer batteries of Sandia conceptual designs during USABC Dynamic Stress Test[J].{H}Journal of Power Sources,1998,(02):240-246.
  • 4HANDE A. Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J].{H}Journal of Power Sources,2006,(02):1039-1046.
  • 5李司光,张承宁,夏孝敏.基于DS18B20的电动车辆动力电池组温控系统[J].电气应用,2008,27(24):54-56. 被引量:1
  • 6杨亚联,张昕,何培祥,钱三平,赵川林,李俊,杨辉前.混合动力汽车镍氢动力电池温度场测试系统[J].四川兵工学报,2008,29(4):112-114. 被引量:7
  • 7王永秋,王庆国.电动客车动力电池温度测量电路及仿真[J].客车技术与研究,2010,32(4):37-38. 被引量:9
  • 8KARHUNEN K,SEPPANEN A,LEHIKOINEN A. Electrical resistance tomography imaging of concrete[J].{H}Cement and Concrete Research,2010,(01):137-145.doi:10.1016/j.cemconres.2009.08.023.
  • 9RODGERS T L,SIPERSTEIN F R,MANN R. Comparison of a networks-of-zones fluid mixing model for a baffled stirred vessel with three-dimensional electrical resistance tomography[J].{H}Measurement Science and Technology,2011,(10):1-12.
  • 10朱勇,王振翀.基于快速傅里叶变换直流分量的土壤电阻率测量[J].光学精密工程,2013,21(1):115-123. 被引量:8

二级参考文献63

共引文献45

同被引文献33

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部