期刊文献+

基于改进型多目标粒子群算法的晶圆制造系统瓶颈工作站调度 被引量:7

Scheduling of bottleneck workstation in wafer fabrication systems based on improved multi-objective particle swarm optimization algorithm
下载PDF
导出
摘要 为了尽可能提高瓶颈工作站利用率,在获得较高系统产能的同时得到一个合理的制造周期,构建了以最小化瓶颈工作站的平均加权提前/拖期时间和最小化瓶颈工作站流程时间为优化目标的改进型多目标粒子群算法,并对瓶颈工作站进行了性能分析.将准时交货和快速生产要求分别映射为瓶颈工作站平均加权提前/拖期时间和流程时间,并构建了多目标优化模型.通过改进速度和位置的更新机制,对陷入局部最优的粒子进行交叉操作,设计了用于瓶颈工作站调度的改进型多目标粒子群算法.在不同作业规模下从算法的稳定性、Pareto前沿质量、收敛速度及运行时间出发,进行了调度仿真试验.结果表明该算法对提高瓶颈工作站的调度性能是有效的、可行的. To maximize the utilization of bottleneck workstation and achieve a high throughput with a rea sonable cycle time, an improved multiobjective particle swarm optimization algorithm (IMOPSO) was proposed with an objective function to minimize the total flow time and the weighed average time of earli ness and tardiness. The performance of the bottleneck workstation was analyzed. A multiobjective opti mization model was built based on the mapping requirements of rapid productions as total flow time and just in time delivery as weighed average time of earliness and tardiness of the bottleneck workstation. An IMOPSO algorithm was established for the scheduling of bottleneck workstation by improving an update mechanism of velocity and position with a crossover operation to the particle falling into local optimum. Based on stability, quality, convergence rate and run time, the simulation experiments were performed to evaluate the proposed algorithm under the conditions of different job scales. The results show that the pro posed algorithm is valid and feasible to improve the scheduling performance of bottleneck workstation.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期63-68,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61273035 71071115)
关键词 半导体晶圆制造系统 瓶颈 工作站 调度 改进型多目标粒子群算法 semiconductor wafer fabrication system bottleneck workstation scheduling improved multi-objective particle swarm optimization algorithm
  • 相关文献

参考文献2

二级参考文献20

  • 1DEB K, PRATAP A, AGARWAL S, MEYARIVAN T. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans Evol Comput 2002,6(2):182-97.
  • 2DONATI A, MONTEMANNI R, CASAGRANDE N, RIZZOLI A, GAMBARDELLA LM. Time dependent vehicle routing problem with a multi ant colony system[J ]. European Journal of Operational Research, 2008,185 (3) :74-91.
  • 3KENNEDY J, EBERHART R. Particle Swarm Optimization[C]. Proc Of IEEE International Conference on Neural Net- works. IS. 1.1: IEEE Press, 1995.
  • 4P S ANDREWS. "An Investigation into Mutation Operators for Particle Swarm Optimization," in Evolutionary Computa- tion, 2006[J]. CEC 2006. IEEE Congress on, 2006:1044-1051.
  • 5ZIZLER E. Evolutionary algorithms for multiobjective optimization:Methods and application. Zurich:Ph D thesis[J]. Swiss Federal Institute of Technology, 1999.
  • 6Hirschel E H, Weiland C. Design of hypersonic flight vehicles: some lessons from the past and future challenges [J]. CEAS Space Journal, 2010, 1 (1/2/3/4): 3 -22.
  • 7Williams P. Hermite-Legendre-Gauss-Lobatto direct tran- scription in trajectory optimization [J]. Journal of Guidance, Control, and Dynamics, 2009, 32 ( 4 ) : 1392 - 1395.
  • 8Huntington G T, Rao A V. Comparison of global and local collocation methods for optimal control [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31 (2): 432 - 436.
  • 9Jain S, Tsiotras P. Trajectory optimization using multiresolution techniques [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31 (5) : 1424 - 1436.
  • 10Wuerl A, Crain T, Braden E. Genetic algorithm and calculus of variations-based trajectory optimization technique [ J ]. Journal of Spacecraft and Rockets, 2003, 40 (6): 882 - 888.

共引文献7

同被引文献104

  • 1白丽平,伍乃骐.半导体重入加工过程自动组合装置的建模与分析[J].计算机集成制造系统,2005,11(3):320-325. 被引量:8
  • 2周炳海,潘青枝,王世进.晶圆制造单元的Petri网建模和性能分析[J].计算机工程与应用,2006,42(35):222-225. 被引量:6
  • 3张元标,吕广庆.基于混合粒子群算法的物流配送路径优化问题研究[J].包装工程,2007,28(5):10-12. 被引量:18
  • 4PETERVZ.芯片制造[M].第4版.北京:电子工业出版社,2004.
  • 5LEE H Y, LEE T E. Scheduling single-armed cluster tools with reen- trant wafer flows [J]. IEEE Transactions on Semiconductor Manufac- turing, 2006, 19(2): 226 - 240.
  • 6PERKINSON T L, GYURCSIK R S, MCLARTY P K. Single-wafer cluster tool performance: an analysis of the effects of redundant chambers and revisitation sequences on throughput [J]. IEEE Trans- actions on Semiconductor Manufacturing, 1996, 9(3): 384 - 400.
  • 7ZUBEREK W M. Timed Petri nets in modeling and analysis of clus- ter tools [J]. IEEE Transactions on Robotics and Automation, 2001, 17(5): 562 - 575.
  • 8WU N Q, ZHOU M C. Colored timed Petri nets for modeling and analysis of cluster tools [J]. Asian Journal Control, 2010, 12(3): 253 - 266.
  • 9KIM J H, LEE T E, LEE H Y, et al. Scheduling analysis of timed- constrained dual-armed cluster tools [J]. IEEE Transactions on Semi- conductor Manufacturing, 2003, 16(3): 521 -534.
  • 10LEE T E, LEE H Y, SHIN Y H. Workload balancing and schedul- ing of a single-armed cluster tool [C] //Proceedings of the 5th Apiems Conference. Gold Coast, Australia, 2004:1 - 15.

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部